US009135269B2

a2 United States Patent

Shetty et al.

US 9,135,269 B2
Sep. 15, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(60)

(1)

SYSTEM AND METHOD OF IMPLEMENTING
AN OBJECT STORAGE INFRASTRUCTURE
FOR CLOUD-BASED SERVICES

Applicants:Sachin Shetty, Mumbai-58 (IN);
Krishna Sankar, San Jose, CA (US);
Amrit Jassal, Morgan Hill, CA (US);
Kalpesh Patel, Flower Mound, TX (US);
Shishir Sharma, Mountain View, CA
(US)

Inventors: Sachin Shetty, Mumbai-58 (IN);

Krishna Sankar, San Jose, CA (US);

Amrit Jassal, Morgan Hill, CA (US);

Kalpesh Patel, Flower Mound, TX (US);

Shishir Sharma, Mountain View, CA

(US)

Assignee: EGNYTE, INC., Mountain View, CA
(US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 94 days.

Appl. No.: 13/708,040

Filed: Dec. 7, 2012

Prior Publication Data
US 2014/0149794 A1l May 29, 2014

Related U.S. Application Data

Provisional application No. 61/567,737, filed on Dec.
7,2011.

Int. CL.

GO6F 15/16 (2006.01)

GO6F 17/30 (2006.01)

GO6F 11/14 (2006.01)

HO4L 29/08 (2006.01)
(f \/ P

“loud Internet

L 10 g """"""""" ”&/ 106
«../‘\‘

AN e
N "
- .

112(1-b}

(52) US.CL
CPC GO6F 17/30194 (2013.01); GO6F 11/1412
(2013.01); HO4L 67/10 (2013.01); HO4L
67/1002 (2013.01); HO4L 67/1095 (2013.01)
(58) Field of Classification Search
USPC ..ccvvvveiecenee 709/219, 226; 455/521; 714/20
See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

2010/0144383 Al* 6/2010 Bergeretal. 455/521
2011/0110568 Al* 5/2011 Vesperetal. 382/128
2011/0153351 Al* 6/2011 Vesperetal. 705/2
2012/0070045 Al* 3/2012 Vesper et al. .. 382/128
2014/0059226 Al* 2/2014 Messerli etal. 709/226
2014/0149794 Al* 5/2014 Shettyetal. ... 714/20

* cited by examiner

Primary Examiner — Tammy Nguyen
(74) Attorney, Agent, or Firm — Larry E. Henneman, Jr.;
Gregory P. Gibson; Henneman & Associates, PLC

(57) ABSTRACT

A method for storing objects in an object storage system
includes the steps of establishing a network connection with
a client over an inter-network, receiving an upload request
indicating an object to be uploaded by the client, selecting at
least two storage nodes on which the object will be stored,
receiving the object from the client via the network connec-
tion, and streaming the object to each of the selected storage
nodes such that the object is stored on each of the selected
storage nodes. The method can also include writing an object
record associating the object and the selected storage nodes to
a shard of an object database and generating a Universally
Unique Identifier (UUID). The UUID indicates the shard and
the object ID of the object record, such that the object record
can be quickly retrieved. Object storage infrastructures are
also disclosed.

50 Claims, 30 Drawing Sheets

VN

N

4 (/\(ocal Cloud

108(1-a)

US 9,135,269 B2

Sheet 1 of 30

Sep. 15, 2015

U.S. Patent

CRAR

% (Wil
//8@:

301
1P

701
POy

propy (800

US 9,135,269 B2

Sheet 2 of 30

Sep. 15, 2015

U.S. Patent

QNNJ

g
PIT~ ie 017
J, 2 2
{310 “saan(]
DITH ‘WNOY “39) 5901104 depy
AJOUIOPN pUoy SHOAON [ROUTY
SIEIO A ~UON]
917
y 2
807 962~ 144 20T
™ ™ ™ ™
(sYootaa((v o) (syan 5&%&
o A0S - HIOMISN
JOVIIOIH] J0SN) . Busss001]
: FUIom : BOIY-IDIA

201

US 9,135,269 B2

Sheet 3 of 30

Sep. 15, 2015

U.S. Patent

G-1zie

pros (#2907

¥l

901

(Frwze A

¢ DId

1OUION]

[\
[

778
{*-1J91¢ ~ Uiwig ~ (#-171¢ ~ (813222 ~ \

BuLonuop (aps) (ar0)

puy OSEGRIB(] ISBABIR(T

UDHBING U0 WIISAS 271 1w2lg0 RETE]
O JIOMIGN TBALLJ

J0ANRK . RATNATN SAIOK
uwongonddy ﬁ\wmmmqm uoyeoddy 1w2(g0
ot el proLD progy
e-poe = (p-Do0g e-nsos 7 G-Dore </

US 9,135,269 B2

Sheet 4 of 30

Sep. 15, 2015

U.S. Patent

Vv DId

[] [] [] []

[] [] [] []

[] [] [] []
SOOURISIAL] PNO]) | UONBULIOIUJ 1T UDHBULIOIU] PIBYS qrusy I~ (070
SOOUBIBIOI PIOIY | HONMRULIGIU] W1 UOTIRULOIH] PIRYS arwy I~ Qoy
SOOUSIDIAL] PUOY) | UONBLLION 18511 HOUBLIIOTU] PIByS apeeny I~ {1zov

oty — sop — ooy — nmu
vop —
VOO0, SR

US 9,135,269 B2

Sheet 5 of 30

Sep. 15, 2015

U.S. Patent

dry DId

® . . ° . . °

® . ° ° [] L] ®

® . . ° ° o °
cseoe oy | SN 17 mﬁoﬁu SUIR | (J1 I2P]0d 1udded a7 :w U3 (3 BPIvT I~ m.m%\um;w
eee || swry | (qfdnoary | swisg [gyaepiogweieg | qr{pmend | drepiod i~ (29Ty
L) el | fraeN 11 on.‘:@ sSwed | 4 =2Piog jusieyg i1 m: U3y (2P0 I~ Mwwemw

g / aLr / 9Ly \ ey Y

43 4 /

Otp Y

00y SUnIs

o1y —

e — 87y
3007 Spog sey
[J L) o [] L] []
[® ® [] ® []
[] L) o [] L] []
see | DPRIOPR(Y SUTEN] (e leee| (135 | ci(ipmwoyy | drdnory ~—{OFiy
see PR SUIBN {myresy |eee| (P)Eosy | a1 (1)imnD Jrdnoiny I~~~ (2wiv
) portad bisrd N (nyiasny |eee| {13308y | Q1 (13Ut (i dnciny I~~~ (Fiy
747 .\ iy .\ {(Wozy .\ (Do .\ 187 .\ ﬂm._u

DTy PRRYS

AT PRS | e

US 9,135,269 B2

Sheet 6 of 30

Sep. 15, 2015

U.S. Patent

Ty

DY DIA

L L} [L) []

[] [] [] * []

® L] [] L} ®
Y _ auaLg W ore(] 19 _ PSR _ sumN _ Y _ i {1y | g dnoin

~ (1}9¢t

WHVK Nm.m.\..\ mﬁw.\

00T USEAL SATOI

&

iy /

[] ® [[] [] [

[L [) [[®

[] ® o L] [[]
eee | PO OWIBN DA arseped | inn |) weny | qwolgo pmna
eee | 13 SHIRN A Qropied | Ginn | Gi(Dwngd | G wslgl eadis
eee | B SUWIBN QA arepied | aing | @ oDweyd | g welgo pmaa

1234 /

{1007 S192190) [BTIA

84 .\

1154 .\ 4%

~/

ovp .\

&

vy —

MY PR

US 9,135,269 B2

Sheet 7 of 30

Sep. 15, 2015

AT AT
L] [o
[[] [] [}
L] [L]
oo [omny o d | |eoe [ar(mmonn| arwofqo pmua |~ (Dsop
oct — e K]
o
00T YSEL S1010) [FOHIA
[} [[]
[] [] [}
[} o []

see _ sun} 7 918 19 _ PO

pov ~/

JO0F USEAL S53p[04]

oo | qr(pmwaD

(11 12piod

134 ~/

&

S ATACETS

8Ty ~/

U.S. Patent

US 9,135,269 B2

Sheet 8 of 30

Sep. 15, 2015

U.S. Patent

VS ‘DId

~ (€)TTs

~— {2377

~ (1)728

USER] | Wed | LB A | g | Aoy oum | sesndey] | () QIO [eee | (1) QIO | QI W00

UseH | Wisd | L@ R | g | Lo oug | seondoy | (0 QUL |eee | (D QI | 102090

ysEH | Wied | 090 e | jea Aoy oud | seoyday | (X)) (0T [eee | (D) AERILE | (1 190IQ0
s1e =816 015 = vyis 15— os— oses— (sos—’ A

005 — SR R-I0R 0 PSR

90% /

~ {£)r0S

~— (7508

eoe | ysEH | B | LWC0 1A | 12Q0 Aoy oun | sworpdey [() (29 [eee [() 207 | (31302090
eee | USBH | GiEd | LW 13C | 120 [Aoy oug | sworpdey [00 QLR [eee [(D) Qrsend | Q1090
ees | useH | gied [9100 | 100 [Ao ouy [seoydoy | () (1ot |ees [(1) QA 20pd | 0000

~— {DF0¢

61¢ .\fm .\ﬁm -/ vis 'z

Y00S — 9B 4100190

[

wm\ amm\

Awaw@m\

&

9g¢ _/

TR B30 705 oS

OB T A-30910 |

73205 breygs

TBN 12409190 U705 pEns | o °

US 9,135,269 B2

Sheet 9 of 30

Sep. 15, 2015

U.S. Patent

dS¢ DId

dumyg own] | 9100SqQ | AJUG prOY | SOWEN OJqRE | SWEN P | WAWS PO | I | I D MRS [~ (0L

dwwig swil | MR0sq0 | ATuD peoy | sowe opgel [owepn gp | osg gpo | 0a | i (o) pmus I~ (T305¢

durgyg oty | 912105qQ | AJuQ PRyl | SOWBN O[QRY | SWEN gP | AR gP0 | A | 1 (1) PIRYS ~— (1)0£S
24748 / 4 / rs _/ Ots / BES _/ 9¢s / ves _/ muu

el /

SPIEYS GBjy 19114300100

JO0S /

US 9,135,269 B2

Sheet 10 of 30

Sep. 15, 2015

U.S. Patent

9 “DIA

705 (1 walgn

0ES (I preys
dep 1oj14-12004(y

<69 /

009
eeo | o] Aoy dAaougy | seoudoy | (O QI [ewe | (D QR | QIGO0 I~ (£3755
oo | (1 | Aoy dArouy | seondey | (O (e [eee | (D arng | arwelan ~~ (D)se
eee | o1 Aoy wdlousg | seonpdoy | (0 QAo | eee | (1) QL 0114 aireslqgn I~~~ (137588

i
Fic |\ <

3.\

Em.\

Emﬁ\

o~
D
o
.
Wy
wh

(0c—" K]

PIRS [0 — Q00 PIdod Bl

P3PS ¢ W01id - (100 PIapy Pl

PIPUS U R — (100¢ PGS e BiTd

US 9,135,269 B2

L "DId

Sheet 11 of 30

Sep. 15, 2015

gt

sms | AJUQ pesy | sepnd porotg | ofesong pesyy | oSwrong mof | wBleM | M| Qi Rid ~ (0oL

symig | A[BO peoy | song poxmg | o8emimg posny | oFmxg ol | wEwA | TN arpd p~{£)70L

s | AJUQ peay] | sojig poroig | ofesols posyy | oSeroig tMIOL | 1SIM | M| dIlmid ~ (DL

siyelg | AjuQ pesy | seli] pauoig | ofeioig pesny | efmoigEol | WERM | Tdn | dlsend ~ (D70l
7 91L _/ P1L .\ 7IL / 01L _/ 80/ _/ 90L _/ %u

vOL /

—_——————

ATetamng 13715

U.S. Patent

004 /

U.S. Patent Sep. 15, 2015 Sheet 12 of 30 US 9,135,269 B2

H2(1-) 104
K00
Local Cloud(s)
Upload
Download
Delele
802
Firswall{s)
314(1-h)

304(1-¢)

File System
dBs

Client App.
Servers

316(1-1)

Load
Balancers

Config. &
Monitoring

308(1-¢)

Cloud App.
Servers

Clowd Object
Servers

312(3-g
U 310(1-6)

Object
dBs

222(1-n}

FIG. &

U.S. Patent

Conficuration
and Monitoring

Sep. 15, 2015

| MNetwork work

Sheet 13 of 30

| Services Laver

Services Laver 910

| Comm. Protocol Stack 912 |

Dise. and
Coordination
Q50

<]

942
(I

US 9,135,269 B2

| Client

| Client Applications 914

| Services Layer
| 904

Synchronization 916

| Services Layer 906

Virtual
File System

Scribe 852
A | G273
| L I I
| Upload | Distributor uJ | Download I_u
| 20—/ T T I qzea/I T 9 8/ Y
08 |
Monitor | | r r
954 |
| : :
. Filer Rebuild 230 |-—
| Object-Filer -
- Filer Rebalance 932 |[«—
0s Logs| | o Object Auditor 934 |«—
958 | ect Auditor ¥5
| Object Purge 936 |a—
| Obiect Dedupe 9 |
- - —_——
| Eiter Services Layer 908
! v
Filer | !
Tracking <-|—>| Storage Node Scrvice 940 I_U
24 | ’47’\‘ 4
I [v
Y | Direct Indirect | Network -
. . | . . Cloud
Filer Filer File File File
Sum. Lo 2 | System Systerm Syfs‘fm‘n 940D
700 936 | | 940A 9408 940C R

FIG. 9

U.S. Patent Sep. 15, 2015 Sheet 14 of 30 US 9,135,269 B2

1606 Object Upload

\ 3% ‘

Clicnt Application Server l

g P Client Upload Process 1002
3

¥ ¥

314 306 |

Load Balancer |

y |

Select Cloud App. Server 1004 |

A |

308 |

- |

312 Cloud App. Server 920

< l____L_f_____L_]
- | |
u i > Assign Object ID 1006 |
7 | |
I |
| |
Filer Summary | | > Distributor 922 |
k7'()(} | |
| |
| |
I > Stream Objects 1008 |
I |
_______ r S p—

Filer
2226x)

FIG. 10

U.S. Patent Sep. 15, 2015 Sheet 15 of 30 US 9,135,269 B2

Chject .
Download Object
r 344 A
Chient
Application
Server
- Clent Download Process 1162
A

Load Balancer

Y
Select Cloud Select Cloud
312 ™ App. Server Object

1108 Server 1104
-
A A

i
i
306
- |
|
|
|
|
|
|
|
|

Y N 1

Cloud | L] |
App. Server |4 — — — — Find Object 1186 |
308 | |

| |

| |

Filer Sunnnary [« —> Retrieve Object 1110 |
| |

N0 | e

Filer

U.S. Patent Sep. 15, 2015 Sheet 16 of 30 US 9,135,269 B2

1200
\ Object
Delete
304 ‘
/
314

Client Application Server

- - Chent Delete Processes 1202

Cloud App. Server

L.
Delete Service 928

g

312
OdB

- - oot Paree o
' Object Purge 936

N

U ¥

Filer Summary

- 700

3()8/

FIG. 12

U.S. Patent Sep. 15, 2015 Sheet 17 of 30 US 9,135,269 B2

1360 |

\ Client 112 | | Local Cloud 104 |

Client API 1302 | | Local Cloud AP 1304 |

! I

| Clicnt Application Scrver 304 |

I

| Client Application Scrver AP 1386 |
! I 1
|
|
|
|
|
|
|
|

|
|
314 |
|
|
|
|
|
|
|
|
|
v

Load Balancer 306

| A

| cosapt 1310 |

P

Cloud Object Server

Y Y
CAS APL 1308

: |

Cloud Application Server 368

. 1 I

Configuration and Monitoring (CM) AP 1316

Filer API 1314 || odBar 312 |
| _ {Object
Filer Database

FIG. 13 - a2

US 9,135,269 B2

Sheet 18 of 30

Sep. 15, 2015

U.S. Patent

*

!

1 DIA

'

!

P IRAIRY QOS,&UEQQ‘@N JUSHD

—P]

mdepy
JIOAIAN
BAIY ST

soukrpy
FICMISN
JFEALIE

(/i 408

AIOWOR {snruny
STIBIO A -TION] Furssoonig

QME.\

w@i.\ wﬁ,i.\

POVL .\ Loyt /

AICIALY SUTHoA8

- >
A
Fivi k
NTE//
1P Wolsis Sunsisd ——P T[] ORIS (000101 SUSTIRITUNUNUD)
0751 18A108 — P Ty WOSAT off] TNl A
pyl sddy uei) D Q71 J0IAICS UOREZIUGIYDUAY
JZYT L4y 10as0g vonpoijddy sty la—pla— gLyl IV 109D

CEVE IV IND < FeR1 ayoen

\J

U.S. Patent Sep. 15, 2015 Sheet 19 of 30 US 9,135,269 B2

Load Balancer 306

A
s, Proloc
Cc;ri;k &(01
> (Cache 1528
M APT 1526 D EE—
> COS AP 1524
CAS API 1522 I EE—
> oAbl 152
Proxy Application 1518 [——p
<—» [.cad Balancer 1516
Operating System 1514 (4——»
Working Memory

kiSiO

1512
I /3 542 I /15(34 I /1506 I /1 508
‘ : . Private
D e OL R N Alat
I mu;sjmg Non~Volatile User 1O Network
Unitfs) Mcemory i
) - Adapter

I I
v V

FIG. 15

U.S. Patent Sep. 15, 2015 Sheet 20 of 30 US 9,135,269 B2

Cloud Application Server 308

A
Comimn. Protocol
Stack 1646
—p Cache 1644
CM API 1642 >
Client Application Server
AP 16480
Filer API 1638 —>
—p| OdB API 1636
CAS API 1634 —

> Object Dedupe 1632

Object Purge 1630 I

< Object Auditor 1628

Filer Rebalance 18626 —

t—> Filer Rebuild 1624

Delete 1622 >

—> Download 1620

Upload and
Distributor 1618

[—> Server 1616

Operating Systent 1614 [—

Working Memory

kiélﬂ

/1612
- Lt
I rl602 I /1604 I KLSG() I /1608

. f s Privale
Processing MNoun-Volatile T —
eSS] User VO Metwork
Unit{s) Memory)
Adapter

f f
v V

FIG. 16

U.S. Patent

Sep. 15, 2015 Sheet 21 of 30 US 9,135,269 B2
Cloud Obiject Server 310
A
CM AP 1730 > Cache 1732
Filor APT 1726 Client Application
HOTAEE Lt e Server APY 1728
CAS APL 1722 —-—> COS API 1724
Comm. Protocol . .
wiltoad 1720
Stack 1718 —— Dowaload 172(
Operating Systemn 1714 [—p-ra—p Server 1716
Working Memory
12 kl?li}
- Y

1702
I 4

I e I

/-i706 I

.

1708
s

Processing

Unit{s}

MNoun-Volatile
Memory

User /O

Private
MNetwork
Adapter

I

I

v

FIG. 17

v

US 9,135,269 B2

Sheet 22 of 30

Sep. 15, 2015

U.S. Patent

A
> peRl SO 107
€871 dmjooy 109190 -~
A BEST =Y2R;
8781 IV WO >
- > 9731 1dV oild
T2 001Dy opoN ofriolg >
- > 7R JOTIS 10201000 WD)
0TS JOAIOR -
— QIR WesAS Sumeisdn
ZIOMDI SUTI0 AL
Ewwk 1Y
- \ 4 ™ .
NMM.:I/ cmmml/ memﬁ// mcf// wcmm// memﬁ//
WP 301G vpe(] sordepy o AICUIN {sypmun
HOts HiRd SSRIA HOMION O/L 1980 B0 A-HON miﬁ\.ﬁopm
. SSRIAL oreA DIBIOA-HON Srrssan
A
AR
+ + \

U.S. Patent Sep. 15, 2015 Sheet 23 of 30 US 9,135,269 B2

A A
' '

RS
procsing | \Noavietie | Gy || nciwors
‘ - Adapter
I k] 902 I \39()4 I - 1966 1 \1 948
= - 1912 4 g
s 19190
Working Memory
Operating System 1914 —p]
-—— Database Server 1916
OdB Tables 1918 >
<+—p Comm. Protocol Stack 1920
Cache 1922 —]
—p GdB AP 1924
CM APT 1926 L
A 4

Obiect Database 312

FIG. 19

U.S. Patent Sep. 15, 2015 Sheet 24 of 30 US 9,135,269 B2

A A
' '

; . : . Private
PFOCESSIT ion-Volatiie ,
! ﬁ;; i*(&:? 8 htﬁi}fgf User VO Network
B S Adapter
I k2{302 I \2004 I \2006 I \2008
- -
k2012 4

2016
r

Working Memory

Operating System 2014 [<—pt—p Datahase Server 2016

File System Tables 2018 (a—pa— Comm. Protocol Stack 2020

Client Application

Cac 27 -t Pt Ll
Cache 2021 Server APY 2024
CAS API 2026 «— > CM APT 2008
Y

File System Database 314

FIG. 20

U.S. Patent

Sep. 15, 2015 Sheet 25 of 30 US 9,135,269 B2
A A
Y Y
Processing Non-Volatils Private
if;:;(:?é ' 0;;“;33&} ¢ User VO Network
TR ey Adapter

A

k?iiﬂél I \2106 I

k2108

¢ -
KZ,E 12 A ,
KZE 16
Workine Momory
Operating Systemy 2114 [t—»
— erver 2116
Discovery and
Coordinaiion 21 IR
— Sertbe 2120
(S Monitor 2122 —p
> Logs 2124
Filer Tracking 2126 P
> Filer Logs 2128
CM APIZI30 P~
—p Comm. Protocol Stack 2132
Cache 2134 —
| 4

Configuration and Monttoring Server 316

FIG. 21

US 9,135,269 B2

Sheet 26 of 30

Sep. 15, 2015

U.S. Patent

A
Q177 QMNPON JAAIDY
Buronuop pur uonznFuoy ¢ ’
—] OT 70 QMPOR 258qBIRG] WSAS o1
PETT S10POIN 25eqRIB(T 1051q0) Da——
—p TETT INPOWN Jojlg
DEC SMPON J9aIs 100140 Prop) -
P T777 SRpom Joakeg uonesddy pno;
D777 SINPO I30UBIRg PROT <«
- Y777 ompopy seasey ddy juai)
L 2Yoe >
——p>] 07ce WAy Sunpindny
RIOTISEY GUTSI0 AL
91 NN.\ 817T
Y N -
Z mmm/ wcmmj
Vize wydepy 017c xndepy 307C FOZZ e
mndepy SIONS WIB(T 2INE BB SIOMEIN 31 AICTOOTA] mur g
NV M SSEN SSBIA IBALL] a8y ITHRIO A -UON Hiid
4 4 4 D0cC WeibAy JoIndiuD,) o]y

U.S. Patent Sep. 15, 2015 Sheet 27 of 30 US 9,135,269 B2

Establish a Connection with a Client

l k 2302

Receive an Upload Request for an Object

l

Select at Least Two Storage Nodes

N
l < 2306
N

Receive the Object from the Client

l

Stream the Object to each of the Selected Storage Nodes

2308

U.S. Patent

Sep. 15, 2015 Sheet 28 of 30

US 9,135,269 B2

Receive a Download Request for an Object

l \\ 2402

Obtain Storage Node Information for Retrieving
the Object from Any of a Plurality of Storage Nodes

l k 2404

Retrieve the Object from Any of the Storage Nodes

l \\ 2406

Provide the Object to the Chient

o 2408

FIG. 24

U.S. Patent Sep. 15, 2015 Sheet 29 of 30 US 9,135,269 B2

N
0
&
<

J

Recetve a Command to Delete an Object from a Client

l

Mark the Object for Deletion in the Virtual File Systerm

l

Mark the Object for Deletion from the Storage Nodes

| N\ 2506

-

2502

-

2504

U.S. Patent Sep. 15, 2015 Sheet 30 of 30 US 9,135,269 B2

Receive an Indication that a Storage Node has Failed
l \\ 2602

Access Object Records Associating an Object
and a Phurality of Storage Nodes Storing the Object

l k 2604

Using the Object Records to Identify
the Objects Stored on the Failed Storage Node.

l \\ 2006

Copy the Identified Objects from
Working Storage Nodes to a Rebuilt Storage Node

k 2608

End

FIG. 26

US 9,135,269 B2

1
SYSTEM AND METHOD OF IMPLEMENTING
AN OBJECT STORAGE INFRASTRUCTURE
FOR CLOUD-BASED SERVICES

RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional
Patent Application No. 61/567,737, filed Dec. 7, 2011 by the
same inventors, which is incorporated herein by reference in
its entirety.

BACKGROUND

1. Field of the Invention

This invention relates generally to cloud computing sys-
tems, and more particularly to cloud file storage systems.
Even more particularly, this invention relates to an object
storage infrastructure for cloud-based services.

2. Description of the Background Art

There are currently several options available to address the
need for file storage. One option is a shared network file
system (NFS) server. The NFS protocol allows a client com-
puter to access files over a network in a manner similar to how
local storage is accessed. Another option is to use a storage
area network (SAN), which is a dedicated network that pro-
vides access to consolidated, block level data storage. A SAN
generally provides only block level storage and access, but
there are SAN file systems that provide file-level access.

As yet another option, there are cloud storage systems such
as, for example, the S3 storage service offered by Amazon. In
cloud computing systems, computing and storage services
are provided to remote clients over a wide area network such
as the Internet.

All of the foregoing object storage options have disadvan-
tages. For example, the burden of scaling falls on the client
applications. This is because the client application needs to
maintain additional logical to physical mapping(s) to distrib-
ute a namespace across multiple shared data stores. In addi-
tion, cloud stores are ideal for storing less frequently used
(archival) objects, but don’t provide the low latency require-
ments, mandatory for storing file server objects. Furthermore,
the foregoing storage options suffer episodes downtime for
system maintenance, patches, etc., which cause the stored
objects to be periodically unavailable.

What is needed is a cloud-based object storage solution
that overcomes or at least reduces the disadvantages dis-
cussed above.

SUMMARY

The present invention overcomes the problems associated
with the prior art by providing an object storage infrastructure
for cloud-based object storage systems. Client applications
are provided with a simplified HTTP based API to retrieve
and mutate persistent objects. The object store provides a
horizontally scalable namespace to the client applications.
Recovery from failing or failed storage nodes, as well as
ensuring integrity of stored objects, is handled by the object
store. Additional services such as encryption and number of
replications of objects are exposed as configurable storage
policies.

An object storage system according to the invention
includes a plurality of storage nodes for storing digital objects
associated with clients, at least one client application server,
and at least one cloud application server. The client applica-
tion server is operative to establish a network connection with
a client over an inter-network, receive an indication of an

10

15

20

25

30

35

40

45

50

55

60

65

2

objectto be uploaded by the client, generate anupload request
associated with the object, and receive the object from the
client. The cloud application server is operative to receive the
upload request, select at least two (the number is config-
urable) storage nodes from the plurality of storage nodes,
receive the object from the client application server, and
stream the object to each of the selected storage nodes such
that the object s stored on each of the storage nodes. Thus, the
cloud application server includes means for selecting at least
two storage nodes and means for streaming the object from
the client application server to each of the selected storage
nodes. In a particular embodiment, each of the storage nodes
exposes a Hypertext Transfer Protocol (HTTP) interface.

In a particular embodiment, the system also includes an
object database storing a plurality of object records where
each record associates a stored object with a plurality of
storage nodes, and the cloud application server causes an
object record associating the uploaded object with the
selected storage nodes to be written to the object database.
The object database can be sharded into a plurality of shards,
each including a plurality of object records. Additionally, the
object database can include a plurality of shard records,
where each of the shard records includes a shard identifier
uniquely identifying one of the shards.

The system can also include a file system database that
stores information defining a virtual file system associated
with the client. The client application server stores virtual
object records in the file system database, including a virtual
object record associated with the uploaded object. According
to a particular embodiment, the file system database includes
a plurality of tables defining the virtual file system, the plu-
rality of tables is sharded into a plurality of shards, and the
data defining the virtual file system for the client is stored in
only one of the plurality of shards. If the client application
server later receives a command from the client to delete the
object, the client application server can modify the virtual
object record associated with the object to indicate that the
associated virtual object is deleted from the virtual file sys-
tem. After the virtual object associated with the object is
marked for deletion, the cloud application server can then
cause the object to be purged from the selected storage nodes.

In another particular embodiment, the cloud application
server is further operative to generate a Universally Unique
Identifier (UUID) associated with the object. The UUID can
include a first field containing data identifying one of the
shards of the object database and a second field containing an
object identifier identifying the object record for the object
among the plurality of object records in the shard. The UUID
can be stored in the virtual file system database in the virtual
object record associated with the object.

Embodiments of the object storage system facilitate vari-
ous other important features of the invention. According to
one embodiment, the object storage system further includes at
least one cloud object server that can download the object
from one of the storage nodes and provide it to the client
application server. For example, the client application server
can receive an indication that the client wants to download the
object and can then generate a download request (optionally
including a UUID from the file system database) for the
object. The cloud object server receives the download
request, requests the cloud application server to provide stor-
age node information for the object, requests the object from
any of the selected storage nodes on which it was previously
stored, and provides the object to the client application server.
The cloud object server can provide the UUID to the cloud
application server to facilitate retrieval of the storage node
information.

US 9,135,269 B2

3

According to another embodiment, the object storage sys-
tem includes a plurality of cloud application servers and/or a
plurality of cloud object servers and a load balancer. The load
balancer can be operative to receive an upload request from
the client application server and provide it to a selected one of
the plurality of cloud application servers. Similarly, the load
balancer can also be operative to receive a download request
from the client application server and provide it to a selected
one of the plurality of cloud object servers.

The object storage system can also include a storage node
rebuild module that rebuilds one of the plurality of storage
nodes, including the objects stored on it, when that storage
node fails. In one embodiment, the storage node recovery
module rebuilds the failed storage node by using the object
records in the object database to identify the stored objects on
the failed storage node and then copying the stored objects
from other storage nodes to the rebuilt storage node. In
another embodiment, the object records are sharded by stor-
age node, and each shard stores all the object records for one
of' the storage nodes. The storage node recovery module then
uses the object records in the shard associated with the failed
storage node to copy the stored objects from other storage
nodes to the rebuilt storage node.

As yet another example, the object storage system can also
include a rebalance module that is operative to move objects
stored on one of the plurality of storage nodes to other one(s)
of the plurality of storage nodes. In doing so, the rebalance
module can modify object records in the object database that
are associated with the moved objects. As still another
example, the object storage system can include an object
auditor that determines whether an object stored on one or
more storage nodes has degraded. If the object has degraded,
the object auditor can, for example, overwrite the object with
a version of the object from another storage node that is not
degraded.

A method for storing objects is also disclosed by the
present invention. The method includes the steps of establish-
ing a network connection with a client over an inter-network,
receiving an upload request indicating an object to be
uploaded by the client, selecting at least two storage nodes on
which the object will be stored from a plurality of storage
nodes, receiving the object from the client via the network
connection, and streaming the object to each of the selected
storage nodes such that the object is stored on each of the
storage nodes (e.g., using HTTP). The method can also
include determining the number of selected storage nodes,
such that the number of replications of the object is config-
urable. Additionally, the upload request can be received from
a load balancer operative to distribute the upload request
among a plurality of cloud application servers.

A particular method further includes the steps of accessing
an object database storing a plurality of object records each
associating a stored object and multiple ones of the storage
nodes, and writing an object record associating the object and
the selected storage nodes in the object database. If a request
to delete the object is received, the method can further include
the step of modifying the object record associated with the
object to indicate that the object is marked for deletion. An
even more particular method includes purging the object from
each of the selected storage nodes.

Another particular method includes generating a UUID for
the object, where the UUID can have the format described
above. More particularly, the method can further include the
steps of receiving a download request for the object, obtaining
storage node information facilitating retrieval of the object
from any of the selected storage nodes on which it was stored,
retrieving the object from any of the selected storage nodes,

25

35

40

45

50

60

4

and providing the object to the client. Obtaining the storage
node information can be accomplished by using the UUID to
locate an object record associated with the object in the object
database. The object record can then be used to retrieve the
object from any of the storage nodes.

Yet another particular method of the present invention can
also involve interacting with a file system database, which
stores data defining a virtual file system associated with the
client. In particular, the method can include the step of storing
a virtual object record (optionally including a UUID) associ-
ated with the object in the file system database. Still a more
particular method includes the steps of receiving an indica-
tion that the client wants to delete the object, and moditying
the virtual object record to indicate that the client wants to
delete the object.

The methods of the invention also encompass the step of
rebuilding a failed one of the plurality of storage nodes,
including the objects stored thereon. For example, rebuilding
the failed storage node includes using the object records in the
object database to identify the stored objects on the failed
storage node and copying the identified stored objects from
other ones of the plurality of storage nodes to the rebuilt
storage node. As another example, the object records can be is
sharded by storage node such that each shard stores all the
object records for one of the storage nodes. An alternate
recovery method includes identifying the shard associated
with the failed storage node and copying the objects con-
tained in the identified shard from other storage nodes to the
rebuilt storage node.

Another particular method of the invention includes mov-
ing objects stored on one of the storage nodes to other one(s)
of'the plurality of storage nodes. Moving objects can include
the steps of accessing the object database and its object
records, and modifying at least some of the object records in
response to moving the objects to other storage nodes. Yet
another particular method of the invention includes determin-
ing whether the object stored on one or more of the plurality
of storage nodes has degraded.

Non-transitory, electronically-readable storage medium
having code embodied therein for causing an electronic
device to perform the methods of the invention are also
described. The term “non-transitory” is intended to distin-
guish storage media from transitory electrical signals. How-
ever, re-writable memories are intended to be “non-transi-
tory”.

The invention also describes a data structure, stored on a
non-transitory, electronically-readable storage medium,
defining a UUID for an object record of an object database.
The UUID data structure includes a first field containing data
defining one of a plurality of shards of the object database,
and a second field containing an object identifier identifying
the object record among a plurality of object records in the
identified shard. The data structure can also include data
identifying a virtual object record of a virtual file system
when implemented in a virtual file system database.

The invention also describes a data structure, stored on a
non-transitory, electronically-readable storage medium, for
an object record of an object database. The data structure
includes a first field containing data uniquely identifying an
object record among a plurality of object records, a second
field containing data identifying a first storage node on which
an object associated with the object record is stored, and a
third field containing data identifying a second storage node
on which the object is stored.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is described with reference to the
following drawings, wherein like reference numbers denote
substantially similar elements:

US 9,135,269 B2

5

FIG. 1 shows a cloud computing system according to one
embodiment of the present invention;

FIG. 2 is a block diagram showing a cloud infrastructure
according to one embodiment of the invention;

FIG. 3 is a block diagram showing a cloud infrastructure
according to another embodiment of the present invention;

FIG. 4A shows an exemplary table of a file system database
of FIG. 3 according to one embodiment of the present inven-
tion;

FIG. 4B shows a plurality of exemplary tables, sharded by
client, of the file system databases of FIG. 4A;

FIG. 4C shows another plurality of exemplary tables,
sharded by client, of the file system databases of FIG. 4A;

FIG. 4D shows still another plurality of exemplary tables,
sharded by client, of the file system databases of FIG. 4A;

FIG. 5A shows exemplary tables of the object databases of
FIG. 3 sharded into a plurality of shards;

FIG. 5B shows another exemplary table of the object data-
bases of FIG. 3;

FIG. 5C shows another exemplary table of the object data-
bases of FIG. 3 sharded by filer;

FIG. 6 shows a data structure for a Universally-Unique
Identifier (UUID) according to one embodiment of the
present invention;

FIG. 7 shows a filer summary table storing a plurality of
filer records associated with the filers of FIG. 3;

FIG. 8 is a relational diagram illustrating the operational
relationships between the elements of FIG. 3;

FIG. 9 illustrates the operational layers and services of the
cloud infrastructure of FIG. 3;

FIG. 10 is a process and dataflow diagram of an object
upload to the cloud according to the present invention;

FIG. 11 is a process and dataflow diagram of an object
download from the cloud according to the present invention;

FIG. 12 is a process and dataflow diagram of an deleting an
object from the cloud according to the present invention;

FIG. 13 is an Application Program Interface (API) diagram
illustrating the APIs between the elements of FIG. 3;

FIG. 14 is a block diagram showing a client application
server of FIG. 3 in greater detail according to one embodi-
ment of the present invention;

FIG. 15 is a block diagram showing a load balancer of FIG.
3 in greater detail according to one embodiment of the present
invention;

FIG. 16 is a block diagram showing a cloud application
server of FIG. 3 in greater detail according to one embodi-
ment of the present invention;

FIG. 17 is a block diagram showing a cloud object server of
FIG. 3 in greater detail according to one embodiment of the
present invention;

FIG. 18 is a block diagram showing a filer of FIG. 3 in
greater detail according to one embodiment of the present
invention;

FIG. 19 is a block diagram showing an object database of
FIG. 3 in greater detail according to one embodiment of the
present invention;

FIG. 20 is a block diagram showing a file system database
of FIG. 3 in greater detail according to one embodiment of the
present invention;

FIG. 21 is a block diagram showing a configuration and
monitoring server of FIG. 3 in greater detail, according to one
embodiment of the present invention;

FIG. 22 is a block diagram showing a computer system
implementing the cloud of FIG. 3 according to another
embodiment of the present invention;

10

20

25

40

45

55

6

FIG. 23 is a flowchart summarizing a method for storing
(uploading) an object on a cloud according to the present
invention;

FIG. 24 is a flowchart summarizing a method for retrieving
(downloading) an object from a cloud according to the
present invention;

FIG. 25 is a flowchart summarizing a method for deleting
an object from a cloud according to the present invention; and

FIG. 26 is a flowchart summarizing a method for rebuilding
a failed storage node, including the objects stored on it,
according to the present invention.

DETAILED DESCRIPTION

The present invention overcomes the problems associated
with the prior art, by providing an object storage infrastruc-
ture for cloud attached file systems. In the following descrip-
tion, numerous specific details are set forth (e.g., database
records with exemplary fields, assignment of application
functions to particular servers, etc.) in order to provide a
thorough understanding of the invention. Those skilled in the
art will recognize, however, that the invention may be prac-
ticed apart from these specific details. In other instances,
details of well-known cloud computing practices and com-
ponents (e.g., establishing network connections, routine opti-
mization of databases and other entities, etc.) have been omit-
ted, so as not to unnecessarily obscure the present invention.

FIG. 1 shows a cloud computing system 100 according to
the present invention. System 100 includes a cloud system
102 and a local cloud system 104, which communicate via an
inter-network 106 (e.g., the Internet). Local clients 108(1-a)
can access files stored on local cloud 104 by directly access-
ing local cloud 104 via local connections 110(1-a) (e.g., local
network connections). Remote clients 112(1-b) can access
files (“‘objects) stored on cloud 102 by accessing cloud 102
via connections 114(1-6) to Internet 106, or via some other
connections 116(1-5) with cloud 102.

The objects on cloud 102 and local cloud 104 can be
synchronized over Internet 106, such that the objects stored
on local cloud 104 are also stored on cloud 102. Thus, the
local cloud 104 itself can be considered a “client” of cloud
102. Additionally, iflocal clients 108(1-a) and remote clients
112(1-b) are associated with the same entity (e.g., business,
customer, etc.), then local clients 108(1-a) and remote clients
112(1-b) can access the files associated with their common
entity either via cloud 102 or via local cloud 104.

Cloud 102 provides a virtual file system interface for
remote clients 112(1-5). Among other options, remote clients
112(1-b) can upload objects to cloud 102, download objects
from cloud 102, and delete objects stored on cloud 102 via the
virtual file system interface. Similarly, local cloud 104 also
provides a virtual file system interface for local clients 108
(1-a). Local clients 108(1-a) can, therefore, upload objects to,
download objects from, and delete objects from local cloud
104 via its virtual file system interface. As indicated above,
cloud 102 and local cloud 104 also interface with each other
via Internet 106 such that their files can be synchronized.
While only one local cloud 104 is shown, those skilled in the
art will understand that cloud 102 can synchronize with many
local clouds 104.

FIG. 2 is a block diagram showing cloud system 102 (here-
after referred to as “cloud 102 for simplicity) in greater
detail, according to one embodiment of the invention. Cloud
102 includes a wide-area network adapter 202, one or more
processing units 204, working memory 206, one or more user
interface devices 208, a local network adapter 210, cloud
services 212, and non-volatile memory 214, all intercommu-

US 9,135,269 B2

7

nicating via an internal bus 216. Processing units(s) 204
impart functionality to cloud 102 by executing code stored in
any or all of non-volatile memory 214, working memory 206,
and cloud services 212. Cloud services 212 represents hard-
ware, software, firmware, or some combination thereof, that
provides the functionality of the object storage services and
other cloud server operations described herein.

Wide area network adapter 202 provides a means for cloud
102 to communicate with remote clients 112(1-5) and local
cloud 104 via Internet 106. Local network adapter 210 pro-
vides a means for accessing a plurality of data storage devices
222(1-n), via a local private network 220. Objects associated
with clients 112(1-6) and local cloud 104 are stored in data
storage devices 222(1-n) and are retrieved therefrom as
needed. A particular advantage of the present invention is the
horizontal data storage scalability of cloud 102. Specifically,
additional data storage devices 222(n+) can be added as
needed to provide additional storage capacity. In this example
embodiment, data storage devices 222 include network
attached storage (NAS) devices, but any suitable type of
storage device can be used. Data storage devices 222(1-n)
will be referred to simply as “filers” 222(1-») below.

The invention, utilizing cloud services 212 and filers 222
(1-n), provides important advantages over the prior art, which
will be discussed in more detail below. For example, each
object stored in cloud 102 can be replicated to each of a
plurality of filers 222(1-»), with the number of replications
being configurable (e.g., by the client, etc.). Because the
objects are replicated across multiple filers 222(1-#), cloud
services 212 facilitate recovery and rebuilding of corrupted
objects and failed filers 222(1-r). Thus, object integrity is
delegated to cloud 102. Moreover, objects can be retrieved
from cloud 102 as long as at least one filer 222(1-#) storing
the object is available and maintenance can be performed on
filers 222(1-») and other elements without downtime. These,
and other advantages of the invention, will be discussed fur-
ther below.

FIG. 3 is a block diagram showing the object storage infra-
structure of cloud 102 according to another embodiment of
the present invention in which cloud 102 and cloud services
212 are implemented as a plurality of entities (computer
systems, software modules, etc.) intercommunicating over a
private network 302. As shown in FIG. 3, cloud 102 includes
one of more client application server(s) 304(1-c), one or more
load balancer(s) 306(1-d), one or more cloud application
server(s) 308(1-¢), and one or more cloud object server(s)
310(1-f), which are all coupled to private network 302. FIG. 3
further shows that cloud 102 includes one or more object
database(s) 312 (1-g), one or more file system database(s)
314(1-%), and one or more configuration and monitoring serv-
er(s) 316(1-i), which are all coupled to private network 302.
FIG. 3 also shows that filers 222(1-#) are coupled to private
network 302.

Several clarifications should be made at the outset. First,
while connections between the entities of FIG. 3 are shown as
single lines for simplicity, it should be understood that con-
nections between the entities can be provided as necessary or
as desired. For example, each instance of client application
server 306 can be coupled to and communicate with private
network 302.

Second, while the entities of cloud 102 are shown sepa-
rately in FIG. 3 for clarity of function, the exact implemen-
tation of these entities in hardware and software can vary. For
example, each instance of client application server 304(1-c)
can be implemented as a dedicated computer coupled to pri-
vate network 302. As another example, the client application
servers 304(1-c) can represent multiple instances of the same

10

15

20

25

30

35

40

45

50

55

60

65

8

software running on a computer. The same is true for the other
entities of cloud 102 shown in FIG. 3. As yet another option,
different entities of cloud 102 can be different modules of
software running on the same computer. For example, one or
more client application servers 304(1-¢) and one or more file
system databases 314(1-g) can be running on the same com-
puter. Additionally or alternatively, one or more cloud appli-
cation servers 308(1-¢) and one or more object databases
312(1-g) can be running on the same computer. These and
other implementations of the entities of FIG. 3 will be appar-
ent in view of this disclosure.

The elements of FIG. 3 provide the following functions.
Private network 302 facilitates intercommunication between
the various entities of cloud 102 that are coupled to it. In the
present example, private network 302 is a secure local area
network dedicated to cloud 102. However, private network
302 can alternatively include multiple private networks. As
yet another alternative, private network 302 can include mul-
tiple private networks that communicate securely with one
another and/or other cloud elements over a public network
(e.g., Internet 106), for example, when cloud 102 includes a
plurality of data centers 320(1-), each containing at least
some some of the elements shown in cloud 102 in FIG. 3.

Client application server 304(1-c) establish and manage
network connections with clients 112(1-5) and/or local cloud
104 via Internet 106. Client application servers 304(1-c) can
also establish and manage the other connections 116(1-5)
with clients 112(1-5). In the embodiment shown, client appli-
cation servers 304(1-c¢) communicate with internet 106 via a
wide-area-network (WAN) adapter (FIG. 14) and can include
one or more firewall(s) (not shown) for preventing unautho-
rized access to cloud 102. Alternatively, client application
servers 304(1-¢) could communicate with Internet 106 via
private network 302, should private network 302 be coupled
to Internet 106 via a firewall and WAN adapter. Such
firewall(s) could be implemented as part of client application
servers 304(1-c) and/or as separate elements.

Each client application servers 304(1-c¢) can also provide a
virtual file system interface for clients 112(1-5) to access their
objects stored on cloud 102. The virtual file system interface
enables clients 112(1-5) to upload objects to, download
objects from, and delete objects from cloud 102. The virtual
file system interface also enables clients 112(1-b) to other-
wise manipulate their virtual file system (e.g., move objects,
create folders, etc.). Virtual file system information (e.g.,
folders, virtual objects, etc.) for each client 112(1-5) is stored
in file system databases 314(1-%). Therefore, client applica-
tion servers 304(1-c) have access to file system databases
314(1-4) via private network 302 as needed to facilitate their
client services.

Client application servers 304(1-c) also synchronize
objects stored on local cloud 104 and cloud 102 such that
local cloud 104 is mirrored in cloud 102. In such an embodi-
ment, the synchronization service provided by client applica-
tion servers 304(1-c) can interface with local cloud 104 and
determine if any changes have been made to local cloud 104
(e.g., objects have been uploaded, modified, deleted, etc.). If
changes have been made, client application servers 304(1-c)
can then synchronize the objects and virtual file system stored
on cloud 102 with the objects and virtual file system on local
cloud 104. As an example, any new objects added to local
cloud 104 can be uploaded to cloud 102 via the synchroniza-
tion process, and client application servers 304(1-¢) can
facilitate deletion of objects on cloud 102 that have been
deleted on local cloud 104.

Client application servers 304(1-¢) also control access to
cloud 102 and objects stored thereon by enforcing permis-

US 9,135,269 B2

9

sions on the parties and elements accessing cloud 102. Per-
missions management frameworks that can be implemented
with cloud 102 are described in detail in co-pending U.S.
patent application Ser. No. 13/689,648, filed on Nov. 29,2012
by Wijayaratne et al., which is incorporated herein by refer-
ence in its entirety.

Each of client application servers 304(1-c) can be imple-
mented using a HyperText Transfer Protocol (HTTP) web
server, such as Apache Tomcat™ developed and licensed by
The Apache Software Foundation. Additionally, the virtual
file system interface and synchronization service can be
deployed as Java™ servlets. Additionally, it should also be
noted that different client application servers 304(1-c) can be
dedicated to particular functions. For example, one client
application server 304(1-c) could provide an interface for
clients 112(1-b) and another client application server 304(1-
¢) could provide synchronization services with local cloud
104.

Load balancers 306(1-d) balance the cloud services load
over cloud application servers 308(1-¢) and cloud object serv-
ers 310(1-). In the present embodiment, load balancers 306
(1-d) also act as proxies for cloud application servers 308(1-¢)
and cloud object servers 310(1-f) and are, therefore, in the
communication path between the client application servers
304(1-¢) and the cloud application servers 308(1-¢) and
between the client application servers 304(1-¢) and the cloud
object servers 310(1-f). In an alternative embodiment, load
balancers 306(1-d) can provide only load balancing services
to cloud 102, such that they only redirect requests from client
application servers 304(1-c) to selected ones of cloud appli-
cation servers 308(1-¢) and cloud object servers 310(1-f).
After a request is redirected to the selected cloud application
server 308 or selected cloud object server 310, the associated
client application server 308 communicates directly with the
selected cloud application server 308 or the selected cloud
object server 310 for the request, and the load balancer 306 is
no longer in the communication path.

Load balancers 306(1-d) receive upload and download
requests for objects from client application servers 304(1-c)
via private network 302. For each upload request received by
a load balancer 306, the load balancer 306 determines the
availability of the cloud application servers 308(1-¢) handling
upload requests, their operational loads, and optionally other
criteria (e.g., a weighting scheme, status, etc.) and then
selects one of the cloud application servers 308(1-¢) based on
the determined information. Load balancer 306 then forwards
theupload request to the selected cloud application server 308
via private network 302. Similarly, for each download request
received by a load balancer 306, the load balancer 306 deter-
mines the availability of the cloud object servers 310(1-f)
handling download requests, their operational loads, and
optionally other criteria and then selects one of the cloud
object servers 310(1-f) based on the determined information.
Load balancer 306 then forwards the download request to the
selected cloud object server 310(1-f) via private network 302.
Optionally, if one of cloud object server 310(1-f) requests
service by one of cloud application servers 308(1-¢) (e.g., for
storage node information), load balancers 306(1-d) can also
receive the request from the cloud object server 310 and
forward it to a selected one of cloud application servers 308
(1-e) based on the loads of the cloud application servers
308(1-¢).

It is important that load balancers 306(1-d) provide high
availability load balancing even under very heavy loads. The
inventors have found that load balancers 306(1-d) can be
successfully implemented using HAProxy™. In one particu-
lar embodiment, two HAProxy™ load balancers 306(1-2) are

10

15

20

25

30

35

40

45

50

55

60

65

10

employed in an active-passive mode. In this embodiment, the
active load balancer 306(1) handles all requests if possible.
The passive load balancer 306(2) steps in and provides fail-
over load balancing should the primary load balancer 306(1)
fail or become overwhelmed.

Cloud application servers 308(1-¢) provide a variety of
object store services, individually or collectively, for cloud
102. For example, responsive to receiving an upload request,
cloud application server 308 will determine a plurality of
filers 222(1-n) to write the object to, receive the object from
one of the client application servers 304(1-c), and stream the
object to the selected filers 222(1-#) without staging the
object. The cloud application server 308 can also generate a
Universally Unique Identifier (UUID) for the uploaded object
and accesses object databases 312(1-g) to cause a new object
record for the uploaded object to be created. The UUID is a
unique identifier to the uploaded object that facilitates rapid
retrieval of the object from filers 222(1-n), as will be
described in more detail below.

Cloud application servers 308(1-¢) also access object data-
bases 312(1-g) to retrieve object information for objects when
requested by other components (e.g., cloud object servers
310, etc.) or when needed by an object store service imple-
mented by cloud application servers 308(1-¢).

Cloud application servers 308(1-¢) are further capable of
causing objects to be deleted from filers 222(1-%). Cloud
application servers 308(1-¢) are able to access the file system
databases 314(1-%) to determine which virtual objects that
clients 112(1-b) have marked for deletion. When a file has
been marked for deletion in the file system databases 314(1-
k), cloud application servers 308(1-¢) updates the associated
object record in an object database 312 (e.g., marks for dele-
tion, moves the record to a deleted objects table, etc.) and then
deletes each copy of the object stored on the filers 222(1-#).
Optionally, updating the object record in the object database
312(1-g) and deleting the objects from filers 222(1-z) can be
implemented in separate processes performed at different
times.

Cloud application servers 308(1-¢) can also include other
cloud maintenance applications that ensure the integrity and
availability of cloud 102. For example, cloud application
servers 308(1-¢) include process(es) that can rebuild a failed
one of filers 222(1-n) using the object-to-filer information
stored in object databases 312(1-g). Cloud application servers
308(1-¢) can also include process(es) that balance/rebalance
the amount of data stored on each filer 222(1-») and update
the object databases 312(1-g) according to the rebalance.
Cloud application servers 308(1-¢) can also include
process(es) that audit objects stored on filers 222(1-»). In
particular, by using a checksum computed during object stor-
age, the cloud application servers 308(1-¢) can ensure that a
plurality of valid replicas of an object are stored on a plurality
of'filers 222(1-r). If a corrupted object (e.g., an object having
bit rot, etc.) is found, the corrupted object can be restored by
over-writing it with an uncorrupted version of the object
stored on another one of filers 222(1-z). These and other
cloud maintenance process(es) (e.g., object dedupe, etc.) can
be implemented using cloud application servers 308(1-¢).
Cloud application servers 308(1-¢) can upload objects to,
download objects from, and delete objects from filers
222(1-n) to carry out these maintenance services.

Cloud application servers 308(1-¢) can be implemented
using a HyperText Transfer Protocol (HTTP) web server,
such as Apache Tomcat™, and some or all of the services
performed by cloud application servers 308(1-¢) can be
implemented as Java™ servlets. Like client application serv-
ers 304(1-¢), different cloud application servers 308(1-¢) can

US 9,135,269 B2

11

be dedicated to different particular functions. For example,
some cloud application servers 308 can be dedicated to object
upload requests, while other cloud application servers 308
can be dedicated to cloud maintenance services.

Cloud object servers 310(1-f) facilitate retrieving objects
from filers 222(1-n) responsive to download requests gener-
ated by client application servers 304(1-¢). Cloud object serv-
ers 310(1-f) receive download requests from client applica-
tion servers 304(1-c) via load balancers 306(1-d). The
download requests indicate objects requested by clients 112
(1-b) or by local cloud 104. Responsive to receiving a down-
load request, the cloud object server 310(1-f) in receipt of the
download request obtains object retrieval information from
one of object applications servers 308(1-¢). The object
retrieval information facilitates retrieving the requested
object from any one of a plurality of filers 222(1-») storing the
object. The cloud object server 310(1-f) then uses the retrieval
information to retrieve the requested object from any one of
the identified filers 222(1-#). The cloud object server 310(1-f)
then provides the requested object directly to the client appli-
cation server 304(1-c) or to the server 304(1-¢) via one of load
balancers 306(1-») acting as a proxy for the cloud object
server 310(1-f).

Cloud object servers 310(1-f) can be implemented using
Nginx, which is an HTTP Web server. The inventors have
found that implementing cloud object servers 310(1-f) using
Nginx provides an important advantage in that a get object
request sent to a first filer 222(1-») can be automatically
re-routed to a second filer 222(1-7) should the first filer 222
(1-n) be down unexpectedly or otherwise rejects the get
object request.

Filers 222(1-n) are storage nodes for the digital objects
stored in cloud 102. Each filer 222(1-») is very generic and
includes at least one instance of a storage node service that
communicates with private network 302 and facilitates stor-
ing, retrieving, and deleting objects in an associated mass data
store 322. In the present embodiment, each storage node
service is an HTTP server exposing an interface that responds
to requests for getting, putting, and deleting objects.

The mass data store 322 associated with a filer 222 can be
implemented in various ways. For example, the mass data
store 322 can be connected to an internal bus of the same
machine running the storage node service. Alternatively,
mass data store 322 can be an NAS device coupled to private
network 302 and in communication with the associated filer
222. Examples of NAS storage devices include disk arrays by
Supermicro™, Just A Bunch of Drivers (JBOD), and a redun-
dant array of independent disks (RAID). As yet another
example, mass data store 322 can be another internet cloud
system, such as Amazon S3. The file system employed by the
filer 222 is also configurable and can include direct access file
systems, indirect access file systems, a network file system
(NFS), B-tree file system (Btrfs), EXT4, etc.

Filers 222(1-n) provide a variety of functions. For
example, filers 222(1-1#) communicate with cloud application
servers 308(1-¢) via private network 302, receive put object
requests from cloud application servers 308(1-¢), and store
the objects in the file system on the associated mass data store
322. Filers 222(1-») can also include services for encrypting
and compressing the objects they receive inline prior to stor-
age if desired. Filers 222(1-r) also receive get object requests
from cloud object servers 310(1-f) to get objects stored
therein. Responsive to a get object request, a filer 222
retrieves the requested objects and returns it to the requesting
cloud object servers 310(1-f). Optionally, the objects can be
decrypted and/or decompressed prior to providing them to
cloud object servers 310(1-f). Alternatively, filers 222 can

10

15

20

25

30

35

40

45

50

55

60

65

12

serve the objects in a compressed and/or encrypted form.
Filers 222(1-r) also receive object delete requests from cloud
application servers 308(1-¢) to delete objects stored therein,
and then delete the objects in response. Filers 222(1-r) can
also receive put object requests, get object requests, and
delete object requests from a cloud application servers 308
when that cloud application server 308 is performing a cloud
maintenance service, such as filer rebalance, filer rebuild,
object auditing, etc.

The storage node service(s) for each of filers 222(1-z) can
be implemented using one or more Apache Tomcat™ web
servers, which facilitate using customized storage algorithms
implemented as Java™ servlets as well as on-the-fly object
encryption, decryption, compression, and/or decompression.
Additionally, other interface(s) (e.g., Samba etc.) can be
employed to interface the web server and the file system.
Filers 222 can also be mirrored for additional backup pur-
poses, for example, using distributed replicated block device
(DRBD) and software. Thus, filers 222(1-») facilitate high-
availability data storage and retrieval services for cloud 102.

Object databases 312(1-g) stores a plurality of object
records for cloud 102. Each object record provides an object-
filer map (along with other data) that identifies each of the
filers 222(1-z) that a particular object has been stored on.
Object tables are sharded into multiple shards that can be
stored across multiple instances of object databases 312(1-g).
Furthermore, the object records in Object databases 312(1-g)
can be denormalized to facilitate rapid lookup of object infor-
mation for a given object. Object databases 312(1-g) can be
implemented using a simple key value store or a relational
database. Object databases 312(1-g) will be described in
greater detail below.

File system databases 314(1-%) store virtual file system
information associated with clients 112(1-b) and local cloud
104. The virtual file system information stored in file system
databases 314(1-%) is used by client application servers 304
(1-¢) to present virtual file systems (e.g., directories with
virtual objects, etc.) to clients 112 and/or to compare file
systems with local cloud 104 for synchronization purposes.
As will be described in more detail below, file system data-
bases 314(1-%) can be normalized and can be implemented
using a relational database (e.g., MySQL™). File system
databases 314(1-2) will be described in greater detail below.

Configuration and monitoring servers 316(1-i) provide
configuration and monitoring services to cloud 102 and main-
tain information that is used by the other elements of FIG. 3.
For example, configuration and monitoring servers 316(1-7)
facilitate the interaction of the elements of cloud 102, for
example, by tracking the uniform resource locators (URLs)
and/or network addresses of cloud elements and making such
information available to the other elements of cloud 102. As
another example, configuration and monitoring servers 316
(1-i) can track information about filers 222(1-»), including
what filers 222(1-r) are operational, what filers 222(1-») are
busy, what filers 222(1-») are read-only, the remaining stor-
age capacity of filers 222(1-n), etc. Servers 316(1-7) can then
make this information about filers 222(1-z) available to the
other elements of cloud 102. Configuration and monitoring
servers 316(1-i) can also log errors (e.g., an object that is
uploaded already exists, an object requested for download
does not exist, etc.) encountered by the elements of cloud 102
such that those errors can be rectified.

Configuration and monitoring servers 316(1-i) can be
implemented in any combination of hardware, software, etc.
In the present embodiment, configuration and monitoring
servers 316(1-i) include the Apache Zookeeper™ coordina-
tion software developed and licensed by The Apache Soft-

US 9,135,269 B2

13

ware Foundation. Configuration and monitoring services can
also be employed as desired using Java servlets.

As will be apparent from the above description, cloud 102
is implemented using HTTP. Using HTTP servers provides an
advantage, because the servers are stateless and treat each
request as an independent transaction. Additionally, using
HTTP {facilitates an easily scalable cloud infrastructure.

FIGS. 4A-4D show a plurality of exemplary tables 400A-
400G stored in file system databases 314(1-%). The informa-
tion contained in tables 400A-400G is used to implement
virtual file systems for clients 112(1-b) and for local cloud
104.

FIG. 4A shows a Clients table 400 A including a plurality of
exemplary client records 402 arranged as the rows of table
400A. However, only client records 402(1-3) are shown in
detail. Each client record 402 includes a client ID field 404, a
shard information field 406, a client information field 408,
and a cloud preferences field 410.

Client ID field 404 is the key field for table 400A and
uniquely identifies one of clients 112(1-5) or local cloud 104.
Shard information field 406 provides shard information asso-
ciated with a shard of tables 400B-400G, as will be described
below. Shard information field 406 contains information suf-
ficient to identify and access the particular shard of tables
400B-400G associated with the entity identified by client ID
field 404. Shard information can include the name of the file
system database shard, the network location of the filer sys-
tem database server having access to the particular shard, the
names of the tables in the particular shard, etc. Shard infor-
mation field 406 can be implemented as multiple fields if
desirable. Client information field 408 includes information
(e.g., name, address, etc.) associated with entity identified by
client ID field 404. Cloud preferences field 410 includes
cloud preference information associated with the entity iden-
tified by client ID field 404. For example, cloud preferences
410 could include data indicative of the number of replicas of
each object that the client wants stored in cloud 102. The
content and number of fields 408 and 410 can also be cus-
tomized as desired. The records 402 of clients table 400A can
also include additional fields as desired.

FIGS. 4B-4D show a plurality of exemplary tables 400B-
400G stored in file system databases 314(1-%). FIGS. 4B-4D
show that tables 400B-400G are horizontally sharded into a
plurality of shards 412(1-w), where each shard 412 is associ-
ated with one of clients 112(1-b) and/or local cloud 104. In
other words, all virtual file system data for one of clients
112(1-b) and/or local cloud 104 is located in one of shards
412(1-w). Each shard 412(1-w) can reside in any of file sys-
tem databases 314(1-%), and there can be more than one shard
412(1-w) in each of file system databases 314(1-%). FIG. 4B
shows that each shard 412(1-w) includes a groups table 400B
and a folders table 400C. FIG. 4C shows that each shard
412(1-w) further includes a virtual objects table 400D and a
groups trash table 400E. FIG. 4D shows that each shard
412(1-w) also includes a folders trash table 400F and a virtual
objects trash table 400G.

Groups table 400B (FIG. 4B) includes a plurality of exem-
plary group records 414 arranged as the rows of table 400B.
However, only group records 414(1-3) are shown in detail.
Each group record 414 is shown to include a group ID field
416, a client ID field 418, a plurality of user fields 420(1-u), a
group name field 422, and a deleted field 424. Group records
414 can include additional fields (e.g., a deleted data and time
field, etc.) and/or the fields contained therein can be modified
as determined to be desirable. All groups records 414 located
in shard 412(1) are associated with a client (1).

35

40

45

55

14

Group ID field 416 contains a group identifier uniquely
identifying the associated group record 414. Thus, group ID
field 416 is the key field for groups table 400B. Client ID field
418 stores a client identifier that identifies the client 112 that
the group record 414 is associated with. The client identifier
stored in client ID field 418 corresponds with one of client
records 402 of table 400A. User fields 420(1-«) identify a
plurality ofusers that are associated with the group defined by
group ID field 416. The users defined in user fields 420(1-«)
are also associated with the client identified in client ID field
418 and are authorized by the client to access at least part of
the client’s virtual file system. (User information associated
with user fields 420(1-«) could be contained in another table,
which is not shown.) Group name field 422 includes data
representing the name chosen for the group associated with
the group record 414. Deleted field 424 is a flag that indicates
if the associated group record 414 has been marked for dele-
tion the client. If so, the associated group record 414 will be
treated as no longer valid and the group record will be moved
to the groups trash table 400E.

Folders table 400C (FIG. 4B) includes a plurality of exem-
plary folder records 426 arranged as the rows of table 400C.
However, only folder records 426(1-3) are shown in detail.
Each folder record 426 includes a folder ID field 428, a client
1D field 430, a parent folder ID field 432, a permissions field
434, a group ID field 436, a folder name field 438, and a
deleted field 440. Folder records 426 can include additional
fields (e.g., a deleted data and time field, etc.) and/or the fields
contained therein can be modified as determined to be desir-
able. All folder records 426 located in shard 412(1) are asso-
ciated with a client (1).

Folder ID field 428 contains a folder identifier uniquely
identifying the associated folder record 414. Thus, folder ID
field 428 is the key field for folders table 400C. Client ID field
430 stores a client identifier that identifies the client 112 that
the folder record 426 is associated with. The client identifier
stored in client ID field 430 corresponds with one of client
records 402 of clients table 400 A. Parent folder ID field 432
contains a folder identifier identifying one of folder records
426 or the root directory that is the parent folder of the folder
record 426. Parent folder 1D fields 432 in folder records 426
facilitate construction of a virtual directory tree for each of
clients 112(1-5) and/or local cloud 104. Permissions field 434
includes data defining permissions (e.g., read only, archive,
etc.) for the folder associated with the folder record 426 and
the objects stored in that folder. Group ID field 436 includes
an identifier identifying one of group records 414 of a group
that is authorized to access the folder of the associated folder
record 426. Each folder record 426 may optionally include a
plurality of group ID fields 436. Folder name field 438
includes data representing the name chosen for the folder
associated with the folder record 426. Deleted field 440 is a
flag that indicates if the associated folder record 426 has been
marked for deletion by the client. If so, the associated folder
record 426 will be moved to the folders trash table 400F and
will not be displayed in the virtual file system.

Virtual objects table 400D (FIG. 4C) includes a plurality of
exemplary virtual object records 442 arranged as the rows of
table 400D. However, only Virtual Object records 442(1-3)
are shown in detail. Each virtual object record 442 includes a
virtual object ID field 444, a client ID field 446, a UUID field
448, a folder ID field 450, and a deleted field 452. All virtual
object records 442 located in shard 412(1) are associated with
a client (1).

Virtual object ID field 444 contains a virtual object identi-
fier uniquely identifying the associated virtual object record
442. Thus, virtual object ID field 444 is the key field for

US 9,135,269 B2

15

virtual objects table 400D. Client ID field 446 stores a client
identifier that identifies the client 112 that the virtual objects
record 442 is associated with. The client identifier stored in
client ID field 446 corresponds with one of client records 402
of clients table 400A. UUID field 448 contains the UUID
associated with the virtual object record 442. The UUID
associates the virtual object record 442 with an object record
stored in object database 312 and, therefore, with an object
stored in a plurality of filers 222(1-z). Folder ID field 450
contains a folder identifier identifying one of folder records
426 or the root directory. The identified folder record 426
represents the folder of the virtual file system containing the
virtual object of the associated virtual object record 442.
Thus, virtual object records 442 facilitate placement of virtual
objects in the virtual directory tree defined by folder records
426. Object name field 452 includes data representing the
name of the virtual object associated with the virtual object
record 442. Deleted field 454 is a flag that indicates if the
associated virtual object record 442 has been marked for
deletion by the client. If so, the associated virtual object
record 442 will be moved to the virtual objects trash table
400G and will not be displayed in the virtual file system.

Virtual object records 442 can include additional fields
and/or the fields contained therein can be modified as deter-
mined to be desirable. For example, each virtual object record
442 can include a deleted data and time field to indicate the
date and time the deleted field 454 was set. As another
example, each virtual object record 442 can include a check-
sum/hash value that can be used to verify the integrity of the
object stored on cloud 102 during upload and at later times,
for example, when the object’s integrity is being audited.

Groups trash table 400E (FIG. 4C) includes a plurality of
exemplary group trash records 456 arranged as the rows of
groups trash table 400E. However, only group trash record
456(1) is shown in detail. Each group trash record 456 corre-
sponds to a group record 414 that has been marked for dele-
tion (e.g., by setting deleted field 424 to a predetermined
value, etc.) and moved to group trash table 400E. Each group
trash record 456 is shown to also include a deleted date and
time field 458 indicating the date and time that the associated
group record 414 was marked for deletion. Like group
records 414, group trash records 456 can include additional
fields and/or the fields contained therein can be modified as
determined to be desirable. All group trash records 456
located in shard 412(1) are associated with a client (1).

Folders trash table 400F (FIG. 4D) includes a plurality of
exemplary folder trash records 462 arranged as the rows of
folder trash table 400F. However, only folder trash record
462(1) is shown in detail. Each folder trash record 462 cor-
responds to a folder record 426 that has been marked for
deletion (e.g., by setting deleted field 440 to a predetermined
value, etc.) and moved to folder trash table 400F. Each folder
trash record 462 also includes includes a deleted date and time
field 464 indicating the date and time the associated folder
record 426 was marked for deletion. Like folder records 426,
folder trash records 462 can include additional fields and/or
the fields contained therein can be modified as determined to
be desirable. All folder trash records 462 located in shard
412(1) are associated with a client (1).

Virtual object trash table 400G (FIG. 4D) includes a plu-
rality of exemplary virtual object trash records 468 arranged
as the rows of virtual objects trash table 400G. However, only
virtual object trash record 468(1) is shown in detail. Each
virtual object trash record 468 corresponds to a virtual object
record 442 that has been marked for deletion (e.g., by setting
deleted field 454 to a predetermined value, etc.) and moved to
virtual objects trash table 400G. Each virtual object trash

10

15

20

25

30

35

40

45

50

55

60

65

16

record 468 also includes a deleted date and time field 470
indicating the date and time when the associated virtual
objectrecord 468 was marked for deletion. Like virtual object
records 468, virtual object trash records 468 can include
additional fields and/or the fields contained therein can be
modified as determined to be desirable. All virtual object
trash records 468 located in shard 412(1) are associated with
a client (1).

FIGS. 5A-5C show a plurality of exemplary tables 500A-
500D stored in object databases 312(1-g). FIG. 5A shows an
object-filer map table S00A and a deleted object-filer map
table 500B horizontally sharded into a plurality of object-filer
map shards 502(1-k). In other words, each of shards 502(1-k)
contain two tables: object-filer map table S00A and deleted
object-filer map table 500B. Object-filer map table S00A and
deleted object-filer map table 500B store the logical to physi-
cal (object ID to filer 222) object map. Each shard 502(1-%)
can reside in any of object databases 312(1-g) and in any
physical host, and there can be more than one shard 502(1-%)
in each of object databases 312(1-g).

The object-filer map table S00A in each shard 502(1-k)
contains a plurality of object records 504 arranged as the rows
of'table 500A. (Only the first three object records 504(1-3) are
shown in detail.) Each object record 504 includes an object ID
field 506, a plurality of filer ID fields 508(1-x), a replicas field
510, an encryption key field 512, a delete field 514, a delete
date and time field 516, a path field 518, and a checksum/hash
field 519. Each object record 504 in table 500A is associated
with an object stored in cloud 102 on filers 222(1-n).

Object ID field 506 contains data uniquely identifying an
associated object stored in some of filers 222(1-»). Filer ID
fields 508(1-x) comprise a plurality of fields, where each field
508 includes a filer identifier uniquely identifying a filer
record contained in a filer summary table (FIG. 7). As will be
explained further below, because each filer record is associ-
ated with one of filers 222(1-n), the filer ID fields 508(1-x)
associate the object record 504 with a plurality of filers 222
(1-n) storing the object. The number of filer ID records 508 in
an object record 504 can vary depending on the object repli-
cation policies of cloud 102, the client 112, and/or local cloud
104. Additionally, each object record 504 can include the
same number of filer ID fields 508 or the number of filer ID
fields 508 can vary from object record 504 to object record
504. Replicas field 510 contains data indicating the total
number of replicas (copies) of the object associated with the
object record 504 that exist across all filers 222(1-#). Encryp-
tion key field 512 stores an encryption key that can be used to
decrypt the associated object if the object has been encrypted.
Encryption key stored in Encryption Key field 512 can be
provided by the client 112 (or one of its users) or it can be a
key generated by an encryption key vault service that gener-
ates and/or accumulates encryption keys associated with a
client 112 on behalf of the client 112. Delete field 514
includes data (e.g., a flag) that indicates if the associated
object record 504 has been marked for deletion. If delete field
514 indicates that the object record 504 is marked for dele-
tion, then the object record 504 will be moved to the deleted
object-filer map table 500B. Delete date and time field 516
includes data indicating the date and time that the associated
object record 504 was marked for deletion. Path field 518
includes data defining a path that is used to locate the object
on any of the filers 222 associated with the filer ID fields
508(1-x). Once the filer 222 is identified and located on pri-
vate network 302, the path field 518 provides the path to the
object on that filer 222.

Each object record 504 can include additional and/or alter-
native fields as determined to be desirable. For example,

US 9,135,269 B2

17

object records 504 could include fields defining object
attributes such as file size, date and time the object was
uploaded to cloud 102, a compressed data size, etc. As
another example, object records 504 can include information
about the client 112, such as a group identifier (e.g., group ID
416). As yet another example, each object records 504 could
include one or more checksum (hash) field(s) 519 used for
verifying the file integrity at different times, such as when the
object is uploaded to cloud 102 and/or to a filer 222 and when
the object is downloaded to the client 112 or local cloud 104.
The checksum/hash value(s) can also be used to facilitate
faster access to the objects on the filers 222 and/or to find
duplicate or similar objects and database records. For
example, objects could be persisted on filers 222 in a folder
structure hashed with the object ID 506 and/or the group 1D
416 for faster access. SHA-512 is one particular hash function
that can be employed and that is strong enough to facilitate
identification of duplicate objects on cloud 102.

Object records 504 are created in table S500A as objects are
uploaded to cloud 102. For each object uploaded to cloud 102,
anobjectrecord 504 can be created for that object in any shard
502(1-k) accepting new object records 504 (e.g., shards that
have read-write status, shards that are not marked as obsolete,
etc.). Additionally, new shards 502(4+) can be added as nec-
essary (e.g., when all of shards 502(1-%) are full or near full,
when the last writable shard 502 is almost full, etc.). Thus,
object databases 312 provide an important advantage in that
they are highly scalable to meet increased demand.

Deleted Object-Filer Map table 500B includes a plurality
of'exemplary deleted object records 522 arranged as the rows
of table 500B. (Only deleted object records 520(1-3) are
shown in detail.) Each deleted object record 522 corresponds
to one of object records 504 that was marked for deletion
(e.g., by setting delete field 514 to a predetermined value,
etc.). When an object record 504 is marked for deletion, the
record 504 is removed from object-filer map table 500 A, and
a corresponding deleted object record 520 is created in
deleted object-filer map table 500B. The deleted object record
522 includes the same fields as the corresponding object
record 504. The deleted object-filer map table 500B facili-
tates rapid deletion of objects from filers 222(1-») that are
marked for deletion by cloud application servers 308(1-¢).

FIG. 5B shows an object-filer map shards table 500C
including a plurality of shard records 530(1-%). A shard record
530(1-k) exists in table 500C for each object-filer map shard
502(1-k) shown in FIG. 5A. Each shard record 530 includes a
shard ID field 532, a data center field 534, an Odb server field
536, a database name field 538, a table names field 540, a read
only field 542, an obsolete field 544, and a time stamp field
546.

Shard ID field 532 uniquely identifies one of shards 502
(1-k). The shard identifier is a globally unique identifier,
which uniquely identifies the associated shard across cloud
102. Data center field 534 identifies one of the data centers
320(1-/) on which the associated shard 502 is stored. OdB
server 536 identifies the database server having access to the
object database 312 containing the associated shard 502.
Database name field 538 includes data defining the name of
the object database 312 containing the associated shard 502.
Table names field 540 contains the names given to tables
500A and 500B in the associated shard 502. Read only field
542 indicates whether or not the tables 500A and 500B of the
associated shard 502 are read-only. If the associated shard
502 is marked read only, then object-filer map table 500A
cannot accept more object records 504. Obsolete field 544
contains data indicating whether or not the associated shard
502 is obsolete (e.g., no longer used by cloud 102, etc.). Time

10

15

20

25

30

35

40

45

50

55

60

65

18

stamp field 546 includes data representing a time stamp of an
event (e.g., the date and time the shard was created, etc.)
pertaining to the associated shard 502.

New shard records 530(4+) can be added to shards table
500C as the number of shards 502(%+) are increased. There-
fore, shards table 500C facilitates the scalability of cloud 102.
It should also be noted that one or many instances of shards
table 500C can be stored among object databases 312(1-g) as
desired, so long as the records 530 between each instance of
shards table 500C are the same. Because table 500C is a
relatively small table, it can be cached for rapid access by
various elements of cloud 102, for example, by cloud appli-
cation servers 308(1-¢).

FIG. 5C shows a filer rebuild table 500D that is sharded by
filer 222. Because there are (n) filers, there are (n) filer rebuild
shards 550(1-z). As new filers 222(n+) are added, additional
filer rebuild shards 550(n+) are also added. Thus, filer rebuild
table 500D is easily scalable. Instances of the complete
rebuild table 500D can be stored among object databases
312(1-g) as desired. Additionally, different shards 550 of filer
rebuild table 500D can be distributed throughout object data-
bases 312(1-g) as desired. In such a case, another shards table
could be beneficial to identity the locations of the filer rebuild
shards 550.

Each shard 550(1-») contains a plurality of object records
552 that are in the same format as object records 502 in table
500A. However, because the records 552 are sharded by filer
222(1-n), shard 550(1) only includes object records 552 for
objects that are stored on filer 222(1). Similarly, shard 550(2)
only includes object records 552 for objects that are stored on
filer 222(2), and shard 550(#) only includes object records
552 for objects that are stored on filer 222(2). Filer rebuild
table 500D can be used to reconstruct a filer 222 that has
failed, according to a particular embodiment of the invention,
described in more detail below. Because each object is stored
on a plurality of filers 222(1-»), when one filer 222 fails, the
filer rebuild shard 530 associated with the failed filer 222 can
be used to track down replicas of the objects stored on the
failed filer 222 on other filers 222, and then copy those objects
to a new filer 222 used to rebuild the failed filer 222.

While FIGS. 5A-5C are discussed in terms of tables for
clarity, it should be understood that object databases 312(1-g)
can be implemented in various ways. For example, object
databases 312(1-g) can be implemented using a key value
store. The denormalized nature of the object records 504,
deleted object records 522, shard records 530, and filer
rebuild object records 552 facilitates the use of key-value
stores with the present invention. Key value stores are also
readily horizontally scalable as the data set grows, which
enables cloud 102 to adapt to a growing client base. Object
databases 312(1-g) can be implemented in relational database
form as well.

It should also be noted that portions (e.g., all of, etc.)
objects databases 312(1-g) can be replicated as desired. The
replications can be implemented in cloud in a Master-Master
or Master-Slave configuration.

FIG. 6 shows a data structure for a Universally-Unique
Identifier (UUID) 600 according to one embodiment of the
present invention. UUID 600 is a smart key that facilitates
rapid object record lookup and includes a first field 602 and a
second field 604. As indicated above, a UUID 600 is gener-
ated for each object stored in cloud 102 during the object
upload process. The UUID for an object is stored in file
system database 314 in the UUID field 448 of the virtual
object record 442 associated with the object.

First field 602 of UUID 600 includes a shard identifier
(e.g., an alpha-numeric key, etc.) associated with one of shard

US 9,135,269 B2

19

records 530(1-%), which in turn identifies one of object-filer
map shards 502(1-%). Second field 604 stores an object iden-
tifier (e.g., an alpha-numeric key, etc.) uniquely identifying
one of the objects records 504 in the object-filer map table
500A oftheidentified shard 502. Thus, givena UUID 600, the
filers 222(1-#) containing the associated object can be
quickly determined. Specifically, given the shard ID in field
602, the object-filer map shard 502(1-%) containing the object
record identified in second field 604 can be quickly identified
and accessed via the shard records 530(1-%) in shards table
500C. Once the shard 502 is accessed, the object record 504
identified by the object identifier in the second field 604 of
UUID 600 can be located and the filers 222(1, . . ., X) storing
the object can be determined from fields 508(1-x). The object
can then be located on any of the identified filers 222(1, . . .,
x) for subsequent use (e.g., providing to the client 112 or local
cloud 104, marking the object for deletion, etc.).

Notably, object-filer map table 500A is denormalized so
the filer identifiers 508(1-x) can be determined with only one
access of an object-filer map shard 502(1-%). Additionally,
caching the shards table 500C would further speed up filer
identification and object access. It should be noted that the
UUID 600 can also be used to locate a deleted object record
522 in deleted object-filer map table 500B if the identified
object record 504 has already been marked for deletion.

FIG. 7 shows a filer summary table 700 storing a plurality
of filer records 702(1-») that are associated with filers 222(1-
n). Each filer record 702(1-z) comprises a row of filer sum-
mary table 700. Each filer record 702 includes a filer ID field
704, a URL field 706, a weight field 708, a total storage field
710, a used storage field 712, a stored files field 714, a read
only field 716, and a status field 718. Each filer record 702
(1-n) may include additional and/or alternative fields as deter-
mined to be desirable. In the present embodiment, filer sum-
mary table 700 is a table maintained by configuration and
monitoring servers 316(1-7), and accessible to cloud applica-
tion servers 308(1-¢), cloud object servers 310(1-f), and any
other element of cloud 102 as desired.

Filer ID field 704 is the key field of the filer summary
record 702 and includes data uniquely identitying an associ-
ated one of filers 222(1-z). URL field 706 includes data (a
URL, IP address, port, etc.) for identifying and communicat-
ing with an associated filer 222 on private network 302.
Weight field 708 includes data prioritizing the associated filer
222 among the pool of filers 222(1-#). For example, a filer 222
having a higher weight could have priority for storing new
objects. A filer 222 having a lower weight could have priority
for getting previously-stored objects. As another example,
each filer record 702 could include a plurality of weight fields
each storing a weight associated with a different filer action.
Total storage field 710 represents the total amount of data that
can be stored on the mass data store 322 associated with the
filer 222, and used storage field 712 represents the amount of
mass data store that is currently used. Total storage field 710
and used storage field 712 facilitate determining how “full”
the associated filer 222 is, which in turn, can be used to
determine if the associated filer 222 should be marked read
only. Stored files field 714 includes data indicating the num-
ber of objects that are stored on the mass data store 322 of the
associated filer 222, which can also be used to determine if the
associated filer 222 should be marked read only. Read only
field 716 includes data (e.g., a flag) that indicates if the asso-
ciated filer 222 is marked read-only. Making a filer 222 read
only is important if the filer 222 is filled past a predetermined
amount (e.g., within 100-200 GB of being full) or if the filer
222 contains so many files that it is being accessed too often
and is becoming a hot spot. If objects are migrated from a filer

25

30

40

45

55

20

222, or space is otherwise freed up, a filer 222 can be changed
back to read-write status. The inventors have determined that
it is beneficial to have enough filers 222(1-») such that five to
six of them are writable at any given time. Status field 718
includes data that indicates the status of the associated filer
222. For example, different data in status field 718 can indi-
cate that the associated filer 222 is working fine, busy, asleep,
off-line, undergoing maintenance, etc.

Filer Summary table 700 advantageously facilitates the
horizontal data scalability of cloud 102. For example, as filers
222(n+) are added to cloud, filer summary records 702(n+)
can be added to table 700 such that the elements of cloud 102
can interact with the newly-added filers 222(n+). Further-
more, because filer summary table 700 is relatively short, filer
summary table 700 can be cached by the various elements of
cloud 102 (e.g., by cloud application servers 308(1-¢), cloud
object servers 310(1-f), configuration and monitoring servers
316(1-i), etc.) as needed to facilitate rapid access to filers
222(1-n).

FIG. 8 is a relational diagram 800 illustrating the opera-
tional relationships between the elements of cloud 102 shown
in FIG. 3. Clients 112(1-b) and local cloud 104 interact with
client application servers 304(1-c) through one or more fire-
walls 802. Clients 112(1-b) generate object upload com-
mands, object download commands, and object delete com-
mands to client application servers 304(1-c¢). Clients 112(1-5)
also upload objects to and receive objects from client appli-
cation servers 304(1-c). Local cloud 104 interacts with client
application servers 304(1-c) to synchronize the file system on
the local cloud 104 with a mirrored file system on cloud 102.
Accordingly, client application servers 304(1-c) provide a
portal for this synchronization to occur. Client application
servers 304(1-c) and local cloud 104 cooperate to determine
changes that need to be made to the file system on cloud 102
based on the local file system on local cloud 104, and then
client application server 304(1-c) carries out the changes in
cloud 102.

Client application servers 304(1-c) also provide portals for
clients 112(1-b) to interact with their virtual file systems.
When a client 112(1-b) and a client application servers 304
(1-¢) have established a network connection, the client appli-
cation server 304 queries one or more of file system databases
314(1-h) for virtual file system information for the client 112
and provides the virtual file system information to the client
112. Client application server 304 also receives upload,
download, and delete commands from client 112 to make
changes to the virtual file system. Responsive to an upload
command, client application server 304 creates a new virtual
object record 442 in file system database 314, generates an
upload request, and issues the upload request to one of load
balancers 306(1-d). Responsive to a download command,
client application server 304 accesses file system database
314 to obtain a UUID 600 from UUID field 448 of a virtual
object record 442, generates a download request, and issues
the download request to one of load balancers 306(1-d).
Responsive to a delete command, client application server
304 interacts with file system database 304(1-%) to cause the
virtual object record 442 to be marked as deleted in the virtual
file system.

Client application servers 304(1-c) also interact with file
system databases 304(1-2) to modify the virtual file systems
for clients 112(1-b) in response to other commands (e.g.,
move commands, new folder commands, etc.). For example,
client application servers 304(1-c¢) can create and modify
folder records 426 as needed. As another example, client
application servers 304(1-c) can receive commands from cli-
ents 112(1-b) to define new groups and create new group

US 9,135,269 B2

21

records 414 and/or to modify existing group records 414.
Client application servers 304(1-c) also interact with clients
112 and local clouds 104 to add new clients 112 and/or local
clouds 104 to the system.

Load balancers 306(1-d) interact with client application
servers 304(1-c), cloud application servers 308(1-¢) and
cloud object servers 310(1-f). Load balancers 306(1-d)
receive upload and download requests from client application
servers 304(1-c) and provide the upload and download
requests to cloud application servers 308(1-f) and cloud
object servers 310(1-f), respectively. In the case that load
balancers 306(1-d) act as proxies, load balancers 306(1-d)
also receive communications from cloud application servers
308(1-¢) and cloud object servers 310(1-f) in response to the
requests, and forwards those communications to the appro-
priate client application servers 304(1-c). If load balancers
306(1-d) do not proxy communications, cloud application
servers 308(1-¢) and cloud object servers 310(1-f) can instead
communicate directly with client application servers 304(1-
¢), as shown by the broken lines in FIG. 8.

When a load balancer 306 receives an upload request from
aclient application server 304, load balancer 306 provides the
upload request to one of cloud application servers 308(1-¢)
for further processing. The load balancer 306 can also receive
a QUID generated by the cloud application server 308 and
provide the UUID to the client application server 304 so it can
be stored in an associated virtual object record 442 of one of
file system databases 314(1-%). The load balancer can also
provide the uploaded file from the client application server
304 to the cloud application server 308. If the load balancer
306 does not act as a proxy, the client application server 304
and the cloud application server 308 can communicate
directly. When a load balancer 306 receives a download
request from a client application server 304, load balancer
306 provides the download request to one of cloud object
servers 310(1-f) for further processing. L.oad balancer 306
also receives the requested object from the cloud object server
310 and provides it to the client application server 304. If the
load balancer 306 does not act as a proxy, the client applica-
tion server 304 and the cloud object server 310 can commu-
nicate directly.

Load balancers 306(1-d) distribute the upload requests
among the cloud application servers 308(1-¢) to maintain
service performance for clients 112(1-5) and local cloud 104
and to not overwhelm any one cloud application server 308.
Similarly, load balancers 306(1-d) distribute download
requests among cloud object servers 310(1-f) for the same
reasons.

Cloud application servers 308(1-¢) interact with load bal-
ancers 306(1-d), cloud object servers 310(1-f), object data-
bases 312(1-g), file system databases 314(1-%), configuration
and monitoring servers 316(1-7), filers 222(1-r), and option-
ally client application servers 304(1-¢). Cloud application
servers 308(1-¢) intercommunicate with load balancers 306
(1-d) and client application servers 304(1-c) to carry out
object uploads from clients 112(1-b) and/or for synchroniza-
tion purposes with local cloud 104. Cloud application servers
308(1-¢) intercommunicate with cloud object servers 310(1-
f)toreceive object information requests for the filers 222(1-»)
on which an object has been previously stored on and for
providing the requested information. Cloud application serv-
ers 308(1-¢) also interact with object databases 312(1-g) to
carry out its various services (e.g., object upload, object
delete, filer maintenance, etc.). Cloud application servers 308
(1-e) also interact with file system databases 314(1-%) (either
directly or via client application servers 304(1-¢)) to deter-
mine which virtual objects have been marked for deletion by

20

25

40

45

55

22

clients 112(1-b) or from the synchronization process with
local cloud 104. Cloud application servers 308(1-¢) are also
capable of interacting with filers 222(1-») to upload objects
thereto, to delete objects therefrom, and to carry out filer
maintenance routines, such as rebuilding and rebalancing
filers 222(1-r). Cloud application servers 308(1-¢) further
interact with configuration and monitoring servers 316(1-i) to
coordinate their operation with other elements of cloud 102,
for example, to determine available filers 222(1-z) to stream
an object to during upload.

Cloud object servers 310(1-f) interact with load balancers
306(1-d), cloud application servers 308(1-e), filers 222(1-n),
and (optionally) with client application servers 304(1-c).
Cloud object servers 310(1-f) intercommunicate with load
balancers 306(1-d4) and client application servers 304(1-¢) to
carry out object download requests. Cloud object servers
310(1-f) also query cloud application servers 308(1-¢) to
request object information for the filers 222(1-7) on which an
object requested for download is stored. Cloud object servers
310(1-f) also interact with filers 222(1-z) to retrieve objects
requested by clients 112(1-5) in download requests. Once an
object is retrieved, the cloud object servers 310 provides the
retrieved object to a load balancer 306 to be passed to the
client 112 or local cloud 104. Alternatively, cloud object
servers 310(1-f) can communicate with client application
servers 304(1-c) directly once the download requests have
been distributed by load balancers 306(1-d). Cloud object
servers 310(1-f) can also interact with configuration and
monitoring servers 316(1-7) to coordinate their operation with
other elements of cloud 102, for example, to determine which
filers 222, selected from the ones identified as storing a
requested object, are available.

Object databases 312(1-g) store object records associated
with the objects stored on filers 222(1-z). When object data-
bases 312(1-g) are queried by cloud application servers 308
(1-e), object databases 312(1-g) return the desired object
information. Object databases 312(1-g) also receive com-
mands from cloud application servers 308(1-¢) to carry out
various database operations (e.g., creating a new object
record 504, updating the information in an existing object
record 504, creating a new object-filer map shard 502, etc.).

File system databases 314(1-/) interact with client appli-
cation servers 304(1-¢) and cloud application servers 308(1-
e) regarding the virtual file systems associated with clients
112(1-b) and local cloud(s) 104. File system databases 314
(1-%) interact with client application servers 304(1-¢) when
client application servers 304(1-¢) need to access or update
the virtual file system associated with a client 112 or local
cloud 104. File system databases 314(1-/) interact with cloud
application servers 308(1-¢) when cloud application servers
308(1-¢) need access to the virtual file system to determine,
via virtual objects trash records 468 in virtual objects trash
table, 400G, which virtual objects have been marked for
deletion.

Filers 222(1-») interact with cloud application servers 308
(1-e), cloud object servers 310(1-f), and configuration and
monitoring servers 316(1-i). Filers 222(1-») communicate
with cloud application servers 308(1-¢) to receive and store
objects uploaded by clients 112(1-b) and/or objects uploaded
during a synchronization with local cloud 104. Filers 222(1-
) also intercommunicate with cloud application servers 308
(1-e) to delete objects stored on filers 222(1-#) and when
cloud application servers 308(1-¢) are performing filer main-
tenance routines (e.g., rebuilding, rebalancing, object audit-
ing, etc.). Filers 222(1-») also interact with cloud object serv-
ers 310(1-f) to serve objects requested by cloud object servers
310(1-f) for download requests. Filers 222(1-») also interact

US 9,135,269 B2

23

with configuration and monitoring servers 316(1-7) to provide
information regarding their operational states (e.g., filer up,
filer down, filer busy, filer read-only, etc.) to configuration
monitoring servers 316(1-7).

Configuration and monitoring servers 316(1-i) interact
with all the elements of cloud 102 as needed to ensure that
those elements can cooperate to carry out their particular
functions. For example, servers 316(1-i) can track the current
status of filers 222(1-n) regarding whether the filers are on-
line, off-line, read-only, etc. Servers 316(1-7) can also gather
and display statistics of all elements of cloud 102, for
example, their current duty cycles, latencies, etc. Servers
316(1-i) can also track private network parameters (e.g.,
URLs of the elements, etc.) and update configuration settings
for the cloud elements as needed to maintain communication
between the cloud elements via private network 302.

FIG. 9 illustrates the operational layers of cloud 102,
including a network services layer 902, a client services layer
904, an object store services layer 906, a filer services layer
908, and a configuration and monitoring services layer 910.

Network services layer 902 includes services that facilitate
communication between cloud 102 and each of clients 112
(1-b) and local cloud 104 via Internet 106 and connections
116(1-5). In the present embodiment, network services layer
902 is shown to include a communications protocol stack
912. Communications protocol stack 912 can be, for
example, a TCP/IP stack as are well-known in the art. Net-
work services layer 902 can also include other networking
services and protocols, such as NetBIOS, Samba, etc., that
facilitate communications over private network 302.

Client services layer 904 includes client applications 914
and a synchronization (sync) service 916. Client applications
914 permit each client 112 to log into cloud 102 (e.g., by
providing a username and password, undergoing an Identity
Provider (IDP) security process, etc.) and to interface with its
virtual file system, as defined by data for the client 112 in file
system database 314. Client applications 914 also allow the
client 112 to provide commands for modifying file system
database 314 and its virtual file system. Client applications
914 also permits client 112 to upload an object to cloud 102,
to download an object from cloud 102, and delete an object
from cloud 102 by way of interacting with the virtual file
system. The sync service 916 synchronizes a client’s files on
cloud 102 with the client’s files on local cloud 104 by record-
ing the file system changes in the virtual file system and by
using the services of the object store services layer 906 to
exchange the data objects (e.g., upload service, download
service, etc.). The sync service 916 can also involve various
security and/or verification processes prior to syncing with
local cloud 104.

Object store services layer 908 consists of a set of services
that provide the object storage functionality of cloud 102 and
other cloud maintenance services. Object store services layer
908 includes an upload service 920 that causes an object to be
uploaded to cloud 102. Upload service 920 is implemented in
cloud application servers 308(1-¢). Additionally, multiple
upload services 920 can be running concurrently on the same
cloud application server 308(1-¢).

Responsive to an upload request from client services layer
904, upload service 920 causes an object to be received from
client services layer 904 and stored (replicated) on a plurality
of filers 222(1-z). For each object uploaded, upload service
920 generates a new object record 504 and UUID 600 and
communicates the UUID 600 to client services layer 904,
which causes the UUID to be stored with the associated
virtual object record 442 in the virtual file system 918.

10

15

20

25

30

35

40

45

50

55

60

65

24

A call to the upload service 920 also calls the distributor
service 922. The distributor service 922 utilizes information
from the configuration and monitoring services layer 910
(e.g., a filer summary table 700, etc.) to identify a set of
available ones of filers 222(1-z) and to provide the set of
available filers 222 to upload service 920. Using a single call
to call both upload service 920 and distributor service 922
increases the efficiency of uploading an object because a call
is eliminated.

Upload service 920 selects a plurality (r) of filers 222 from
the set of available filers 222 returned by distributor service
922 and streams the uploaded file to the selected (r) filers 222.
The object can optionally be streamed to two or more of the
selected (r) filers 222 concurrently. If one of the selected filers
222 returns an error (e.g., object already exists), then upload
service 920 selects a new filer 222 and writes a replica of the
object to that filer 222 instead. The upload service 920 also
records the filer identifiers for the (r) selected filers 222 in filer
1D fields 508(1-x) and the object path 518 to the object on
each of the (r) selected filers 222 in the object record 504
created for the uploaded object in the object filer map 500.
Upload service 920 provides any errors returned by the filers
222 during the upload service to configuration and monitor-
ing services layer 910.

Upload service 920 can also be capable of performing
several object integrity routines. For example, the upload
service 920 can calculate a checksum/hash on the object as it
is being streamed to the (r) selected filers 222 and store it in
checksum/hash field 519 of the associated object record 504.
Upload service 920 can provide this checksum to client ser-
vices layer 904 for comparison with a checksum calculated in
that layer to ensure integrity of the uploaded object. Similarly,
upload service 920 can also provide its checksum and the
object path on the selected (r) filers 222 to configuration and
monitoring services layer 910 for a comparison with a check-
sum calculated by filer services layer 908.

Distributor service 922 will now be further described. Dis-
tributor service utilizes filer summary table 700 to identify
available filers 222(1-») and then provides a list of the avail-
able filers to upload service 920. As indicated above, filers
222(1-n) can be marked read-only if they become too full by
way of field 716 in table 700. Therefore, distributor service
922 disregards the read-only filers 222(1-r) in the set of
available filers 222 it provides to upload service 920. If a
read-only filer 222 later has its status changed back to read-
write, then distributor service 922 would again consider that
filer 222 for object uploads. Distributor service 922 can also
use weight fields 708 in filer summary table 700 and a weight-
ing scheme (e.g., fill empty filers first, etc.) to create its set of
available filers 222. Upload service 920 would then select the
(v) filers 222 from the weighted set to implement the filer
hierarchy. Alternatively, distributor 222 can employ a round
robin scheme (not weighted) to return its set of available filers
222. As another option, Fisher-Yates shuffling of filers 222
between upload processes can be used to avoid a “thundering
herd” situation at one of the filers 222.

The distributor service 922 provides several advantages.
For example, the distributor service 922 can optimize the
number of files and the amount of used storage on each filer
222. Additionally, distributor 922 can prioritize filers 222, for
example, to fill new filers first. Offline and read-only filers 22
are automatically not considered for object upload, reducing
errors. Distributor service 922 also avoids too many concur-
rent writes to one filer 222.

It should also be noted that distributor service 922 is
optional. For example, upload service 920 might simply send
an object put request to all filers 222(1-z) and complete the

US 9,135,269 B2

25
object put request with the first (r) filers 222 that answer. The
other filer connections 222 would get dropped. This has the
advantage of less filer tracking, instantaneous load balancing,
and instantaneous failover.

Object store services layer 908 also includes a download
service 920 that causes an object to be retrieved from one of
filers 222. Download service 920 is implemented for clients
112 and local cloud 104 by cloud object servers 308(1-¢) to
facilitate rapid downloading of objects from cloud 102.
Download service 920 can also be implemented in cloud
application servers 308(1-¢) to facilitate cloud maintenance
applications (e.g., filer rebalance, filer rebuild, etc.). Addi-
tionally, multiple download services 926 can be running con-
currently on the same cloud object server 310(1-f) and/or
cloud application server 308(1-¢).

Download service 926 downloads an object from one of the
filers 222(1-») storing the object. In response to a download
request (including a UUID 600) from client services layer
904, download service 926 uses the UUID 600 and informa-
tion contained in object database 312 to identify the filers 222
storing the associated object. Download service 926 can then
uses filer records 702 in the filer summary table 700 to retrieve
the object from any filer 222 storing the object.

Object store services layer 908 also includes a delete ser-
vice 928 that causes object records 504 in object databases
312(1-g) to be marked for deletion based on the virtual object
trash records 468 in file system databases 314(1-%). In the
present embodiment, delete service 928 is implemented by
cloud application servers 308(1-¢). Multiple delete services
928 can be running concurrently on the same cloud applica-
tion server 308(1-¢).

Delete service 928 utilizes virtual object trash records 468
in file system databases 314(1-%) to determine which virtual
objects have been deleted from virtual file system. For each
virtual object trash record 468, delete service 928 obtains its
UUID 600 from UUID field 448 in the virtual object trash
record 468. Delete service 928 then uses the UUID 600 to
locate an associated object record 504 in the object databases
312(1-g). Delete service 928 then modifies the associated
object record 504 to indicate that the object is marked for
deletion and optionally deletes the associated virtual object
trash record 468.

Object store services layer 906 also includes filer rebuild
service 930, which enables a partially or fully failed filer 222
to be recovered. Filer rebuild service 930 is implemented by
cloud application servers 308(1-¢). Additionally, multiple
filer rebuild services 930 can be running concurrently on the
same cloud application server 308(1-¢), and multiple cloud
application servers 308(1-¢) can be executing filer rebuild
service 930 concurrently.

Filer rebuild service 930 can be implemented in two dif-
ferent ways. According to the first process, when a filer 222
fails, file recovery service 930 identifies the failed filer 222
(e.g., using logs in the monitoring layer 910, filer summary
table 700 and status fields 718) and then accesses object
databases 312(1-g). Filer rebuild service 930 then reads each
object record 504 in table 500 A in each object-filer map shard
502(1-k). For each object record 504 that includes a filer ID
field 508 matching the failed filer, file recovery service 930
utilizes the other filer ID fields 508 to identify working filers
222 that also contain the object associated with the object
record 504. Filer rebuild service 930 then copies the object
from one of the working filers 222 to the rebuilt filer 222.
Copying the object from one of working filers 222 can include
issuing a get object request to one of the working filers 222 to
get the object, and then using a put object request to put the
object on the new filer 222. Filer rebuild service 930 can do

15

35

40

45

50

55

26
the same for each deleted object record 522 in deleted object-
filer map table 500B in each shard 502(1-%). When the filer
rebuild service 930 completes searching all the object-filer
map tables 500A (and optionally tables 500B), the failed filer
will have been rebuilt.

According to a second process, when a filer 222 fails, filer
recovery service 930 identifies the failed filer 222 and then
accesses an associated filer rebuild table 500D for the failed
filer 222. Because table 500D is sharded by filer 222, the
associated filer rebuild table 500D contains object records
552 for all objects stored on filer 222 that have yet to be
deleted from it. For each object record 552, filer rebuild
service 930 will cause the object to be copied from one of the
working filers 222(1, . . . , X) storing a replica of the object to
the rebuilt filer 222.

The object replication scheme of the present invention
provides the advantage that each filer 222 can be recon-
structed if it fails by chasing down and copying replicas of its
objects from the other working filers 222. Thus, client data is
more secure and less prone to being lost. Moreover, if client
data was replicated on filers 222 across multiple data centers
320, the client data would not be lost even if all the filers 222
in one data center 320 were destroyed (e.g., in a fire, etc.).

Given the potential for the filer rebuild process 930 to
require a lot of overhead, rebuilding a failed filer 222 can be
split into several batches/jobs (e.g., five, etc.) given band-
width and other resource limits.

Object store services layer 906 also includes filer rebalance
service 932, which manages the distribution of data stored on
each of'the filers 222(1-n). Optionally, filer rebalance service
can also be used to migrate data between data centers 320(1-
7). In the present embodiment, filer rebalance service 932 is
implemented by cloud application servers 308(1-¢). Addi-
tionally, multiple filer rebalance services 932 can be running
concurrently on the same cloud application server 308(1-¢),
and multiple cloud application servers 308(1-e¢) can be
executing filer rebalance service 932 concurrently.

As new filers 222(n+) are added to increase the storage
capacity of cloud 102 or as objects are stored in cloud 102
over time, the filers 222(1-#) can become out of balance in
terms of the amount of data stored on each one. Filer rebal-
ance service 932 facilitates rebalancing the filers 222(1-n)
such that each contains approximately (e.g., plus/minus 10%,
etc.) the same amount of data. Filer rebalance service 932 can,
therefore, move objects between filers 222 to even out the
amount of data stored on each filer 222(1-»), ensuring that
multiple copies of the same object are not stored on the same
filer 222. To do so, filer rebalance service 932 can search out
object records 504 having a filer ID field 508(1-x) that
matches the over-full filer 222. When an object is found, the
filer rebalance service 932 can copy the object from the over-
full filer 222 to a less-full filer 222 by issuing a get object
request to the over-full filer and a put object request to the
less-full filer 222. The object can then be deleted from the
over-full filer by issuing a delete object request thereto. Filer
rebalance service 932 also updates the associated object
records 504 to reflect the moved objects. Thus, filer rebalance
service 932 can identify hot spots among filers 222(1-») and
remediate them.

Filer rebalance service 932 can also balance the filers 222
(1-n) by selectively marking filers 222(1-z) as read only. For
example, when a filer 222 reaches a predetermined capacity
(e.g., within 100 GB of its maximum capacity) in the course
of normal operation, filer rebalance service 932 can modify
read only field 716 of the associated filer summary record 702
to mark the filer 222 as “read only.” Accordingly, that filer 222
could no longer receive have objects uploaded to it, at least

US 9,135,269 B2

27

until it was changed back to read-write status. Subsequently,
if many objects were purged from the filer 222 marked “read-
only,” then filer rebalance service 932 could change the read-
only filer 222 back to read-write status such that additional
objects could be stored thereon. Filer rebalance service 932
can also use this process to maintain each of filers 222(1-») at
approximately the same percentage of full capacity.

Object store services layer 906 also includes an object
auditor service 934, which verifies the integrity of objects
stored on filers 222(1-»). In the present embodiment, object
auditor service 934 is implemented by cloud application serv-
ers 308(1-¢). Multiple iterations (e.g., a number of iterations
equal to the number of filers 222(1-n), etc.) of object auditor
service 934 can be executing concurrently on the same cloud
application server 308, and multiple cloud application servers
308(1-¢) can be executing object auditor service 934 concur-
rently.

Object auditor service 934 is an object consistency checker
that maintains the integrity of each object stored on filers
222(1-n) and ensures that a predetermined number of valid
copies of the object exists across all filers 222(1-r). Over
time, objects stored on filers 222(1-#) can become corrupted
and unreadable (e.g., due to bit rot). Object auditor service
934 walks through the objects stored on each of the filers
222(1-n), reads them, and for each of the objects that is
corrupted, finds an uncorrupted copy of the object on one of
the other filers 222(1-»), and replaces the corrupted object
with the uncorrupted copy. Object auditor service 934 can
also check to make sure there are at least two (or more as
defined by configuration) copies of each object stored among
the filers 222(1-n).

Object auditor service 934 can be carried out using the
objectrecords 504 stored in object databases 312(1-g). Object
auditor service 934 can read an object record 504, and issue a
get object request to each of the filers 222 identified in the
object record to obtain the replicas of the object associated
with the object record 504. Object auditor service 934 can
then compute a checksum for each of the retrieved objects and
compare those checksums to a checksum 519 stored in the
associated object record 504. If any of the calculated check-
sums for the replicas of the object do not match the stored
checksum, then object auditor service 934 knows which rep-
lica(s) is/are bad and can over-write them with a good copy of
the object from one of the other filers 222, or if necessary, a
copy stored on local cloud 104. Optionally, the object auditor
service 934 can obtain a checksum from the file system data-
bases 314(1-/) instead.

Object auditor service 934 can be configured to audit
objects as desired. For example, the object auditor service 934
can select object records 504 randomly. Additionally, the
object auditor service 934 can be configured to audit each
object at a particular frequency (e.g., twice per year). As
another example, object auditor service 934 can be called to
audit all files on a filer 222 that experiences an unexpected
glitch or goes down. In a particular embodiment, object audi-
tor service 934 is implemented as a Cron job that runs in the
background.

Object store services layer 906 also includes an object
purge service 936 that purges objects from filers 222(1-»). In
the present embodiment, object purge service 936 is imple-
mented by cloud application servers 308(1-¢). Multiple itera-
tions of object purge service 936 can be executing concur-
rently on the same cloud application server 308, and multiple
cloud application servers 308(1-¢) can be executing object
purge service 936 concurrently.

When object purge service 936 is called, object purge
service 936 reads the deleted object records 522 in deleted

10

15

20

25

30

35

40

45

50

55

60

65

28

object-filer map table 500B of one or more object databases
312(1-g). For each deleted object record 522, object purge
service 936 identifies the filers 222(1, . . ., X) on which that
object is stored using filer ID fields 508(1-x). Object purge
service 936 then sends delete object requests (including the
path 518) to filers 222(1, . . ., X) to delete the object on filers
222(1, . . ., x). When object purge service 936 receives
indications that the object has been deleted from all filers
222(1, . . ., x), then object purge service 936 deletes the
associated deleted object record 522 from deleted object-filer
map table 500B. If the object cannot be deleted from all of
filers 222(1, . . ., x), then object purge service 936 will clear
the filer ID fields 508 from the deleted object record 522 for
the filers 222(1, . . . , x) from which the object was success-
fully deleted. Object purge service 936 can return to the same
deleted object record 522 at a later time to finish deleting all
copies of the object from the remaining filers 222(1, . . ., x).
When the object has been deleted from all filers 222(1, . . ., x),
then object purge service 936 will delete the deleted object
record 522.

Particular embodiments of object purge service 936 pro-
vide particular advantages. For example, separating the
object purge service 936 and the delete service 928 advanta-
geously permits an object to be “undeleted” prior to purging
it from filers 222(1, . . ., x), simply by moditying the deleted
field 514 of the associated deleted object record 522 and
moving the record back to object-filer map table 500A.
According to another embodiment, a client 112 or cloud 104
can provide an indication that an identified object is to be
purged from cloud 102 immediately. In this case, cloud appli-
cation servers 308(1-¢) can call object purge service 936 and
direct it to purge the identified object immediately.

An object deduplication (“dedupe™) service 938 is also
shown in object store services layer 906. In the present
embodiment, object dedupe service 938 is implemented by
cloud application servers 308(1-¢). Multiple iterations of
object dedupe service 936 can be executing concurrently on
the same cloud application server 308, and multiple cloud
application servers 308(1-¢) can be executing object dedupe
service 936 concurrently.

Object dedupe service 938 provides the advantage that a
file is replicated across the filers 222(1-#) only once. As
indicated above, when an object is uploaded, a checksum/
hash is computed and saved in checksum/hash field 519 in the
object record 504 associated with the new object. When
called, object dedupe service 938 reads the checksum/hash
field 519 of the new object and searches the other object
records 504 in object database(s) 312(1-g) for another object
record 504 having the same checksum/hash. If another object
record 504 is located with the same checksum/hash as the new
object, then the new object record 504 is modified according
to the existing object record 504 with the same checksum. For
example, the new object record 504 could be modified to
include the same filer ID fields 508(1-x) and path field 518 as
the existing object record 504 with the same checksum. Alter-
natively, the new object record 504 might be modified to point
to the existing object record 504 with the same checksum.
Once this correlation between the new object record 504 and
the existing object record 504 is made, object dedupe service
938 deletes the copies of the new object 504 that were
uploaded to the filers 222. Object dedupe service 938 can be
implemented periodically (e.g., after client log-out, daily,
weekly, monthly, etc.) as routine maintenance, right after an
object is uploaded to cloud 102 via upload service 920, as part
of' upload service 920, etc.

Because object dedupe service 938 utilizes the checksum/
hash computed during object upload, it is important that the

US 9,135,269 B2

29

checksum/hash function be strong enough to make the dupli-
cate-checking process reliable. The inventors have found that
using a SHA-512 hash function is suitable for object de-
duplication.

Filer services layer 908 show the services for each filer
222(1-n). Filer services layer 908 includes at least one storage
node service 940 fronting mass data store 322. In the present
embodiment, each storage node service 940 comprises a web
server that exposes an HTTP interface. As such, storage node
service 940 responds to put object, get object, and delete
object requests received from the services of object store
services layer 906. Each storage node service 940 can also
include other services such as encryption and decryption on
objects as they are being received or served, compression and
decompression as they are being received or served, event
notifiers, object health monitors, quality control modules,
copy and shredding applications, data migration applications,
object scanners (e.g., for viruses, etc.), hash tables and/or
other object location databases or data files, local deduplica-
tion applications, etc. Multiple iterations of storage node
service 940 can be executing concurrently for each filer 222
(1-n). Storage node service 940 can be implemented using an
Apache Tomcat™ web server.

Each storage node service 940 also provides an interface to
mass data store 322. Mass data store 322 is shown represen-
tationally in FIG. 9. Mass data store 322 can be any mass data
storage device and can have a direct file system 940A, an
indirect file system 940B, and a network file system 940C.
Mass data store 322 can even be another private or public
cloud having a cloud file system 940D. For example, direct
file system 940A can comprise any of XFS, Puppy Linux
(2FS), B-tree File System (Btrfs), or Fourth Extended File
System (EXT4) storing data on a D-RAID of JBOD device
322 using an ISCSI or Fibre Channel Over Ethernet (FCoE)
protocol. As another example, indirect file system 940B can
comprise XFS storing data on a mapped RAID or JBOD
device (e.g., using DM-LVM protocol). As another example,
network file system 940C can include Sun’s Network File
System storing data on a data center produced, for example,
by EMC Corporation. As still another example, mass data
store 322 and cloud file system 940D can include Cloud S3™
by Amazon and its associated file system. The invention,
therefore, provides an important advantage in that objects can
be persisted in a variety of different storage devices, and even
private and public clouds, due to the HTTP interface exposed
by filers 222(1-n).

Configuration and Monitoring Services (CMS) Layer 910
includes services that coordinate the services provided in the
other layers of cloud 102. CMS layer 910 includes a discovery
and coordination service 950, a scribe service 952, a filer
tracking service 954, and an object store monitoring service
956. Multiple iterations of the services in layer 910 can be
running concurrently. The services of CMS layer 910 provide
the following functions.

Discovery and coordination service 950 ensures the ser-
vices of cloud 102 can discover and interact with one another.
For example, discovery and coordination service 950 discov-
ers and manages the network configurations of the various
elements and/or services communicating on private network
302. Discovery and coordination service 950 can also create
a register of network configurations so that the network con-
figuration of one cloud element/service can be shared with the
other cloud elements/services. In a particular embodiment,
discovery and coordination service 950 manages a frame-
work of common URL interfaces between elements and ser-
vices of cloud 102. Discovery and coordination service 950
can also provide notifications indicating whether elements

5

10

15

20

25

30

40

45

55

60

65

30

and/or services are on-line or off-line (e.g., via Ping tests, etc.)
and/or when elements and/or services change their network
configuration (e.g., changing from read-write to read-only
status and vice-versa, etc.). Discovery and coordination ser-
vice 950 also facilitates the scalability of cloud 102. For
example, service 950 ensures that any expansions of cloud
102 (e.g., adding a new filer 222, adding a new object data-
base 312, etc.) are properly configured. Service 950 can also
perform test runs on the expansions before the expansions are
brought online. The inventors have found that discovery ser-
vice 950 can be implemented using Apache Zookeeper™.

Scribe service 952 records any important messages gener-
ated by the services of the other layers 902,904, 906, and 908.
For example, scribe service 952 can log error messages gen-
erated by the upload service 920, download service 926, and
delete service 928. In particular, if upload service 920 tried to
put an object on a filer 222 that already existed, then scribe
service 952 can log the error returned by filer 222. Other
errors generated by a filer 222, such as errors in get object
requests (file does not exist) and errors in delete object
requests (file does not exist), can also be logged by scribe
service 952. Optionally, scribe service 952 can also log mes-
sages for use by other services. For example, scribe service
952 can log object information (e.g., object size, full object
path, etc.) for an uploaded object for filer tracking service
954.

Filer tracking service 954 tracks the activity of filers 222
(1-n) and updates the filer records 702 of filer summary table
700 accordingly. For example, filer tracking service 954
monitors the amount of bytes in and/or out of filers 222 via
scribe service 952 and/or storage node service 940 to deter-
mine outages or hotspots. As a result, filer tracking service
954 can adjust the weight fields 708 of the filer records 702
accordingly. Filer tracking service 954 also listens to mes-
sages by scribe service 952 and updates the filers summary
table 700 accordingly (e.g., updates used storage fields 712,
updates stored files field 714, etc.). Filer tracking service 954
can also implement a ping and/or latency test that pings
storage node services 940 to determine that the filers 222(1-#)
are on-line and/or to determine their latencies. The service
954 can use the latencies to determine hot spots. Service 954
can then use this ping and latency information to update filer
summary table 700 (e.g., update weight fields 708, status
fields 718, etc.).

Filer tracking service 950 also generates filer logs 956.
Filer logs 956 include statistics about filers 222(1-z) that can,
for example, be used by administrators of cloud 102 to
improve cloud services. For example, filer logs 956 can
include the amount of bytes transferred in and out of a filer
222 over a period of time (e.g., 24 hours, 30 days, etc.). Filer
logs 956 can also include utilization metrics for a filer 222,
such as space and bandwidth utilization over a period of time.
Filer tracking service 950 can also record input/output (1/O)
faults, cache misses, average I/O rates, etc. for a filer 222(1-r)
in filer logs 956. Filer tracking service 950 can prepare filer
logs 956 using information provided to it from storage node
services 940 and/or messages recorded by scribe service 952.

Object store (OS) monitoring service 956 monitors object
store services and associated components of cloud 102 and
generates OS log files 958, which can be used by administra-
tors of cloud 102 to improve cloud services. For example, OS
monitoring service 956 can monitor and log the number of
calls to upload service 922, download service 926, and delete
service 928 over a predetermined amount of time (e.g., daily,
weekly, monthly, etc.). OS monitoring service 956 can also
monitor and log the object databases 312(1-g) to determine
their statistics (e.g., number of object-filer map shards 502,

US 9,135,269 B2

31

the number of object records 504 in each shard, table counts,
size of tables, space remaining in the database 312(1-g), etc.).
OS monitoring service 956 can also ping the upload services
920, download services 924, and delete services 928 to deter-
mine their metrics (e.g., uptime, number of requests, error
counts, etc.) and latencies for performing test upload
requests, download requests, and delete requests. As yet
another example, OS monitoring service 956 can monitor the
statistics of a cache (e.g., a Memcached cache) being used by
services of layer 906. The OS logs 958 can be used by cloud
administrators, for example, to determine when additional
cloud application servicer 308, cloud object servers 310(1-f)
and object databases 312(1-g) need to be added to cloud 102
to accommodate growing demand.

Cloud 102 can also include additional service layers that
are not expressly shown in F1G. 9. For example, cloud 102 can
include caching layers as desired to promote rapid informa-
tion retrieval. For example, it would be desirable to cache the
object-filer map shards table 500C (FIG. 5B) to rapidly locate
and access particular shards 502(1-k) of object databases
312(1-g). As another example, it would be desirable to cache
the filer summary table 700 such that filers 222(1-7) can be
quickly accessed given a filer identifier (e.g., filer identifier
508 from an object record 504). As yet another example,
caching portions of file system databases 314(1-4) would be
desirable to give a client 112 more responsive access to his
virtual file system. For the same reasons, it may be desirable
to cache portions of object databases 312(1-g). Caching lay-
ers can be implemented using a caching system such as Mem-
cached (http://memcached.org).

In view of the embodiments described of the invention
described above, it is readily apparent that the present inven-
tion provides particular advantages over the prior art. For
example, the object replication policies implemented by
cloud 102 is important, because it permits client access to
objects even if some of filers 222(1-z) are oft-line. Addition-
ally, it enables a failed one of filers 222(1-#) to be rebuilt using
replicas of the objects from other filer(s) 222. Furthermore,
the replication policy facilitates auditing objects to determine
degraded objects, and restoring the degraded objects using
replicas of the degraded objects stored on other filer(s) 222.
Moreover, the replication policy permits the filers 222 to
undergo routine maintenance in a staggered manner without
disrupting cloud service to clients 112. For example, if a
client requests an object and one of the filers 222 on which
that object is stored is down for maintenance, the object can
still be retrieved from one of the other filer(s) 222 containing
the object. The replication policy also enables the cloud 102
to reduce hotspots by diverting requests from busy filers 222.
Furthermore, if the replicas of objects are stored on different
data centers 320(1-/) located at different sites, objects can be
recovered even if an entire data center 320(1-y) is destroyed
(e.g., by fire, etc.).

Another advantage of the present invention is that the filers
222(1-r) and other elements of cloud 102 expose HT TP inter-
faces. Thus, filers 222(1-») can be implemented using a vari-
ety of mass data stores, including other private and public
clouds, and cloud 102 can be scaled up easily.

Still another advantage of the present invention is that the
distributed nature of the components of cloud 102 permits the
components to undergo routine maintenance and patches
without any downtime or glitches. For example, one filer
222(1-n) can go off-line without affecting access to objects
stored in cloud 102. As another example, one cloud applica-
tion server 308 can go down for maintenance, while other
cloud application servers 308 temporarily take over its tasks.

10

15

20

25

30

35

40

45

50

55

60

65

32

Yet another advantage is that the invention is readily scal-
able. For example, filers 222(n+) can be easily incorporated
as storage requirements of cloud 102 grow. Additional shards
502(k+) of object databases 312(1-g) can also be readily
added to cloud 102 as object storage requirements increase.

The invention also provides the advantage that compres-
sion and encryption services are delegated to the storage node
services of'the filers 222(1-7). Thus, the processing resources
of'the filers 222 are fully utilized and the other cloud services
are relieved of these burdens. Optionally, cloud object servers
310(1-f) can serve compressed data to the client 112 or cloud
104 to conserve bandwidth, if the client 112 or cloud 104
support decompressing the compressed content. Indeed,
these and other advantages of the present invention will be
apparent in view of this disclosure.

FIG. 10 is a process and dataflow diagram 1000 of a file
upload process from a client 112 (or local cloud 104) to the
cloud 102 according to the present invention. As shown in
diagram 1000, a client application server 304 receives an
objectupload command from a client 112 itis servicing (e.g.,
by the client 112 dragging and dropping a file into the client’s
virtual file system, the client saving a file in an application,
etc.). Client application server 304 includes a client upload
process 1002 that receives the object upload command and
the object (a data file) from client 112. Client upload process
1002 then creates a new virtual object record 442 in file
system database 314 associated with the object being
uploaded such that the uploaded object will appear in the
client’s virtual file system. Client upload process 1002 also
generates an upload request and provides the upload request
to load balancer 306.

Load balancer 306 receives the upload request and initiates
a cloud application server selection process 1004. The selec-
tion process 1004 selects ones of cloud application servers
308(1-¢) accepting upload requests based on the availability
and respective loads of cloud application servers 308(1-¢).
Load balancer 306 then forwards the upload request to the
selected cloud application server 308. In the current embodi-
ment, load balancer 306 is a proxy for cloud application
server 308 and, therefore, it coordinates communications
between client application server 304 and cloud application
server 308. However, in an alternative embodiment, client
application server 304 and the selected cloud application
server 308 can communicate directly, as indicated by the
dashed line therebetween.

Cloud application server 308 receives the upload request
and calls upload service 920. In an assign object ID process
1006, upload service 920 assigns a new object identifier 506
for the new object and accesses a shard 502 of one of object
databases 312. There it creates a new object record 504 in the
object-filer map table 500 A of the accessed shard 502. Assign
object ID process 1006 then generates a UUID 600 compris-
ing a first field 602, having the shard identifier 532 associated
with the shard 502 to where the new object record 504 was
written, and a second field 604 containing the new object
identifier 506. Upload service 920 then provides the UUID
600 to client upload process 1002, and client upload process
1002 stores the UUID 600 in the file system database 314 in
UUID field 448 of the associated virtual object record 442 for
the uploaded object.

Upload service 920 also performs distributor service 922 to
select a plurality of the filers 222(1-z) on which to store the
new object. Distributor service 922 accesses filer summary
table 700 and determines the status of filers 222 using the data
therein. Distributor service 922 then recommends filers 222
on which to store the new object, for example, based on fields
708-718 of the filer records 702 in filer summary table 700.

US 9,135,269 B2

33

Upload service 920 then selects at least two filers
222(1, . . ., x) from the set recommended by distributor
service 922 and issues put object requests to the selected filers
222(1, . . ., x). Upload service 920 communicates with the
selected filers 222(1, . . ., x) using the URL information in
fields 706 of filer summary table 700. Upload service 920 also
includes a desired path at which the object is to be stored on
each of the filers 222(1, . . ., X) in the put object requests.
Upload service also requests the object from client upload
process 1002 and streams the new object to the selected filers
222(1, ..., x)in a stream process 1008. (Note that the new
object is advantageously streamed to the selected filers
222(1, ..., x) without staging, whereby the object is synchro-
nously replicated among the selected filers 222(1, . . ., X).)
When upload service 920 receives confirmation from the
selected filers 222(1, . . ., x) that the new object has been
stored, upload service 920 completes the fields (e.g., filer ID
fields 508(1-x), replicas field 510, encryption key field 512,
path field 518, etc.) of the object record 504 associated with
the new object and/or writes any messages via scribe service
952.

Each of the selected filers 222(1, . . . , X) receives a put
object request (e.g., an HTTP PUT request, etc.) from cloud
application server 308 to store the new object. The respective
storage node services 940 receive the new object and stores
the new object at the path indicated in the put object request.
Filers 222(1, .. ., x) canalso compress and encrypt the objects
inline as they are being stored. Furthermore, filers
222(1, . .., x) can perform other processes on the new object,
such as computing a checksum to compare with a checksum
computed by the upload service 920 to verity file integrity,
etc.

FIG. 11 is a process and dataflow diagram 1100 of a file
download process from cloud 102 to a client 112 (or local
cloud 104) according to the present invention. As shown in
diagram 1100, a client application server 304 receives an
object download command from a client 112 (e.g., by client
112 dragging and dropping a file icon from his virtual file
system to his computer, client 112 double clicking a virtual
file system icon, accessing a virtual file using an open com-
mand in an application, etc.). Client application server 304
includes a client download process 1102 that receives the
object download command from client 112 and locates the
virtual object record 442 in file system database 314 associ-
ated with the requested virtual object. Client download pro-
cess 1102 then retrieves the UUID 600 from UUID field 448
in the virtual object record 442, generates a download request
including the UUID 600, and provides the download request
to load balancer 306.

Load balancer 306 receives the download request and ini-
tiates a cloud object server selection process 1104. The selec-
tion process 1104 selects ones of cloud object servers 310(1-f)
accepting download requests based on the availability and
respective loads of cloud download servers 310(1-f). Load
balancer 306 then forwards the download request to the
selected cloud object server 310.

Cloud object server 310 receives the download request and
initiates download service 926. In a find object process 1106,
download service 926 requests object information for the
requested object from one of cloud application servers 308 by
providing the UUID 600 for the requested object to a cloud
application server 308. In one embodiment, download service
926 requests object information from one of cloud applica-
tion servers 308 via load balancer 306. Load balancer 306
receives the request for object information and initiates a
cloud application server selection process 1108, which
selects ones of cloud application servers 308(1-¢) based on

10

15

20

25

30

35

40

45

50

55

60

65

34

the availability and respective loads of cloud application serv-
ers 308(1-¢). Load balancer 306 then routes the request for
object information to the selected cloud application server
308. In an alternative embodiment, cloud object server 310
can bypass load balancer 306 completely, and request object
information directly from one of cloud application servers
308.

The selected cloud application server 308 receives the
object information request and uses the UUID 600 to obtain
the object information. Cloud application server 308 uses the
shard ID 532 in the first field 602 of UUID 600 to locate the
object database 312(1-g) having access to the identified
object-filer map shard 502. Cloud application server 308 then
uses the object ID in the second field 604 of UUID 600 to
locate the object record 504 associated with the requested
object within the identified shard 502. Once the object record
504 is located, cloud application server 308 provides some or
all of the information in the object record 504 (e.g., filer ID
fields 508(1-x), path field 518, checksum 519, etc.) to cloud
object server 310.

When cloud object server 310 receives the object informa-
tion from cloud application server 308, download service 926
initiates a retrieve object process 1110 in which download
service 926 selects one of filers 222(1, . . ., x) identified by
filer ID fields 508(1-x) in the object record 504 to retrieve the
requested object from. The retrieve object process 1110
accesses the filer records 702 from filer summary table 700
and uses the data therein (e.g., weight field 708, status field
718, etc.) to determine which filer 222(1-x) to retrieve the
object from. When a filer 222 is selected, retrieve object
process 1110 generates a get object request for the object and
provides the get object request to the selected filer 222.
Download service 926 is able to communicate with the
selected filer 222 by retrieving the data in URL field 706 from
the filer record 702 in filer summary table 700 associated with
the selected filer 222. The get object request also utilizes the
path information contained in path field 518 from the
retrieved object information so the object can be located on
the selected filer 222.

The selected filer 222 receives the get object request (e.g.,
an HTTP GET request, etc.) from the cloud object server 310
to retrieve the requested object. The storage node service 940
retrieves the requested object using the path information in
the get object request and provides the requested object to the
cloud object server 310. The selected filers 222 can also
decompress and/or decrypt the requested object as it is being
served, or alternatively serve the object compressed and/or
encrypted. Upon receiving the retrieved object, download
service 926 forwards the object to client application server
304 (e.g., via load balancer 306, directly to server 304, etc.),
and client download process 1102 then serves the retrieved
object to the client 112. Optionally, the download service 926
can compute a checksum on the served object, and compare it
to a checksum in the retrieved object information, before
providing the object to client download process 1102.

Again, if load balancer 306 acts as a proxy, it can be in the
communication path between client application server 304
and cloud object server 310 and between cloud object server
310 and cloud application server 308 (shown by solid
arrows). Alternatively, if load balancer 306 only performs
load balancing by redirecting requests, then the client appli-
cation server 304 and the selected cloud object server 310 can
communicate directly with one another after load balancing
(shown by dashed arrows). Similarly, the selected cloud
object server 310 can also communicate directly with the
selected cloud application server 308 after the load balancing.

FIG. 12 is a process and dataflow diagram 1200 of object
delete processes according to the present invention. As shown
in diagram 1200, a client application server 304 receives an

US 9,135,269 B2

35

object delete command (e.g., client 112 deleting an icon from
his virtual file system) identifying a virtual object from a
client 112 (or local cloud 104) it is servicing. Client applica-
tion server 304 includes a client delete process 1202 that
receives the object delete command and locates the virtual
object record 442 in file system database 314 corresponding
to the deleted virtual object. Client delete process 1202 then
sets the delete field 454 and writes the data and time in deleted
date and time field 470, indicating that the virtual object
record 442 is marked for deletion. Client delete process 1202
then moves the virtual object record 442 to the virtual objects
trash table 400G and stores it as a virtual object trash record
468. Atthis point, the virtual object appears to be deleted from
the virtual file system but is not deleted from the filers 222(1-
r). Over time, virtual object trash records 468 accumulate in
the virtual object trash tables 400G in the file system database
shards 412(1-w).

Subsequently, a cloud applications server 308 executes
delete service 928. Delete service 928 accesses the virtual
objects trash table 400G in one or more file system database
shards 412(1-w). For each virtual object trash record 468,
delete service 928 locates the associated object record 504 in
one of object databases 312 using the UUID 600 contained in
the UUID field 448 of'the trash record 468. Delete service 928
then modifies deleted field 514 in the object record 504 to
mark the object record 504 for deletion, records the date and
time in field 516, and moves the object record 504 to the
deleted object filer map table 500B where it is stored as a
deleted object record 522. Because object record 504 has
been moved to deleted object-filer map table 500B, the object
associated with object record 504 is unavailable for download
from any of filers 222 unless the record is moved back to the
object-filer map table 500A (e.g., in response to an undelete
request from client application server 304).

Any of cloud application servers 308 can also perform
object purge service 936 whereby objects that are associated
with deleted object records 522 are purged from filers 222(1-
7). When object purge service 936 is called, it accesses
deleted object-filer map trash table 500B in at least some
shards 502(1-%) and reads the deleted object records 522 that
were previously marked for deletion by delete service 928.
For each deleted object record 522, if a predetermined
amount of time (e.g., 24 hours, 30 days, etc.) has passed since
the date and time contained in field 516, then object purge
service 936 uses the filer IDs 508(1-x) and path 518 in the
deleted object record 522, and the data in URL field 706 in
filer summary records 702, to send delete object requests to
each of the identified filers 222(1, . . . , X). The delete service
928 and the object purge service 936 can be performed by
different cloud application servers 308(1-¢).

The filers 222(1, . . . ,x) receive delete object requests (e.g.,
an HTTP DELETE request, etc.) from cloud application
server 308 executing object purge service 936. For each
delete request, the object store service 940 deletes the asso-
ciated object stored thereon. If object application server 308
receives no errors during the purge service 936 of an object,
then the associated deleted object record 522 can be deleted
from object database 312, including from the optional filer
rebuild tables 500D that are sharded by filer 222. If the purge
process 936 does not complete on all filers 222(1,, x), then
the associated deleted object record 522 can be retained in
object database 312 until all replicas of the object have been
purged.

Cloud 102 also handles modified versions of objects uti-
lizing the processes described above with reference to FIGS.
10-12. In the present embodiment, objects stored in cloud 102
are logically immutable, which facilitates particular advan-

10

15

20

25

30

35

40

45

50

55

60

65

36

tages of the invention including replication of objects across
multiple filers 222(1-#) and de-duplicating objects across a
very large data set. Thus, each version of an object is stored in
cloud 102. For example, if a client 112 downloaded an object,
modified the object, and then saved the modified object to
cloud 102, the modified object would be saved as a new object
using the upload process described above.

Storing revised versions of objects can be optimized in
various ways. According to one particular example, objects
can be stored at the block level (as opposed to file level) such
that (approximately) only the modified blocks associated
with a file are stored in cloud 102. Older versions of those
blocks are de-duplicated and/or deleted. This method would
result in more objects and object records being stored. As
another example, current and previous versions of an object
can be “patched together” by generating and storing patch
information for the current version of the object. For example,
avirtual object record 442 associated with a current version of
an object might include patch information that links the cur-
rent virtual object record 442 with the virtual object record(s)
442 associated with past version(s) of the object. Periodically
(e.g., at client log-out, weekly, etc.), older versions of objects
(blocks or otherwise) can be deleted from cloud 102 by mark-
ing the object record 504 and/or virtual object record 442
associated with the older object for deletion. As still another
example, a virtual object record 442 might only be stored for
the current version of an object, while virtual object records
442 associated with past versions of an object are marked for
deletion as the modified objects are created. Thus, the older
versions would be deleted in due course.

FIG. 13 is an Application Program Interface (API) diagram
1300 illustrating various APIs between the elements of cloud
102 according to one embodiment of the invention. Diagram
1300 includes a client API 1302, a local cloud API 1304, a
client application server API 1306, a cloud application server
(CAS) API 1308, a cloud object server (COS) API 1310, an
object database (OdB) API 1312, a filer API 1314, and a
configuration and monitoring (CM) API 1316. While APIs
1302-1316 are shown and described as single APIs, it should
be recognized that each of the APIs 1302-1316 can be imple-
mented using multiple sub-APIs that facilitate different
aspects of the interfaces. As indicated above, the elements of
cloud 102 are HTTP based. Therefore, the API’s described in
FIG. 13 can include, but are not necessarily limited to, HTTP.

Client API 1302 defines the protocols for communications
between client 112 and client application server 304. Client
API1302 provides the interface whereby client 112 can inter-
act with the virtual file system presented by client application
server 304. Client API 1302 also negotiates communications
associated with the object upload, download, and delete com-
mands between client 112 and client application server 304.
Client API 1302 also communicates other modifications to
the virtual file system made by client 112 (e.g., folder modi-
fications, virtual object moves, etc.) to client application
server 1302.

Local cloud API 1304 defines the protocols for communi-
cations between local cloud 104 and client application server
304. Local cloud API 1304 provides the interface whereby
local cloud 104 can interface with client application server
304. Local cloud API 1304 also negotiates communications
associated with the synchronization process between local
cloud 104 and cloud 102, including object upload, download,
and delete processes as well as other modifications (e.g.,
folder changes, virtual object moves, etc.) to the virtual file
system.

Client application server API 1306 defines the protocols
for communications between client application server 304

US 9,135,269 B2

37

and load balancer 306 and between client application server
304 and file system database 314. Optionally, client applica-
tion server API 1306 also defines the protocols for commu-
nication between client application server 304 and cloud
application server 308 and/or cloud object server 310. Client
application server API 1306 receives upload and download
requests (and any associated communications) from client
application server 304 and provides those communications to
load balancer 306. Client application server API 1306 also
receives responses to such communications (e.g., the
requested object) from load balancer 306 (which can act as a
proxy for cloud application server 308 and cloud object server
310) and provides those communications to client application
server 304.

Client application server API 1306 also provides an inter-
face for client application server 304 to communicate with file
system database 314 to access the virtual file system for client
112 and to make changes to the virtual file system (e.g.,
creating new records, storing UUID’s, clearing trash tables,
etc.). In an embodiment where client application server 304
communicates directly with cloud application server 308,
client application server API 1306 establishes the protocols
for communications associated with an object upload such as
streaming the object to cloud application server 308 and/or
receiving the UUID from cloud application server 308. In an
embodiment where client application server 304 communi-
cates directly with cloud object server 310, client application
server API 1306 establishes the protocols for communica-
tions associated with an object download such as receiving
the requested object from cloud object server 310.

CAS API 1308 defines the protocols for communications
between cloud application server 308 and each of load bal-
ancer 306, file system database 314, and cloud object server
310. CAS API 1308 receives upload requests from load bal-
ancer 306 and provides them to cloud application server 308.
CAS API 1308 also receives communications from cloud
application server 308 (e.g., UUIDs, etc.) and provides the
communications to load balancer 306. CAS API 1308 also
facilitates interaction between cloud application server 308
and file system database 314. For example, CAS API 1308
provides requests for deleted virtual objects to file system
database 314, receives responses to the requests from file
system database 314 (e.g., UUIDs for the deleted virtual
object records, etc.), and provides the responses to cloud
application server 308. CAS API 1308 also receives object
information requests via load balancer 306 or from cloud
object server 310 directly and provides the object information
requests to cloud application server 308. CAS API 1308 then
provides the requested object information (e.g., the object
record, etc.) to cloud object server 310 directly or via load
balancer 306.

COS API 1310 defines the protocols for communications
between cloud object server 310 and load balancer 306. COS
API 1310 receives download requests (including UUIDs)
from load balancer 306 and provides those download requests
to cloud object server. COS API 1310 also receives the
requested object from cloud object server 310 and forwards
the requested object to load balancer 306 (unless cloud object
server 310 communicates directly with client application
server 304 via client application server API 1306).

OdB API 1312 defines the protocols for communications
between cloud application server 308 and object database
312. OdB API 1312 receives requests from cloud application
server 308 to create new object records in object database
312, and provides those requests to object database 312. OdB
API 1312 also receives queries for object information (e.g.,
filer and path information for a given object identifier, object

10

15

20

25

30

35

40

45

50

55

60

65

38

records associated with a failed filer, checksums, deleted
object records, etc.) from cloud application server 308 and
provides those queries to object database 312. When object
database 312 returns the requested information, OdB API
1312 provides the requested information to cloud application
server 308. OdB API 1312 also receives requests from cloud
application server 308 to modify or delete the records of
object database 312 (e.g., to mark object records for deletion,
to update filer information during filer rebalance, to remove
deleted object records when their associated objects are
purged from filers 222, etc.), and provides those requests to
object database 312. OdB API 1312 can also provide confir-
mations that the modifications were made to cloud applica-
tion server 308.

Filer API 1314 defines the protocols for communications
between filer 222 and each of cloud application server 308
and cloud object server 310. Filer API 1314 receives put
object requests to store objects on filer 222 from cloud appli-
cation server 308 and provides those put object requests to
filer 222. Filer API 1314 also receives streamed objects
uploaded from cloud application server 308 and provides
them for storage on filer 222. Filer AP1 1314 also receives get
object requests from cloud application server 308 (e.g., dur-
ing filer rebuild, rebalance, etc.) and/or cloud object server
310 and provides those get object requests to filer 222. When
filer 222 serves the requested object, filer API 1314 provides
it to cloud application server 308 or cloud object server 310.
Filer API 1314 can also receive delete object requests from
cloud application server 308 and provides those delete object
requests to filer 222. Filer API 1314 can also provide
acknowledgements to cloud application server 308 and cloud
object server 310.

CM API 1316 defines the protocols for communications
between configuration and monitoring server 316 and the
other elements of cloud 102, including client application
server 304, load balancer 306, cloud application server 308,
cloud object server 310, object database 312, file system
database 314, and filer 222. CM API 1316 is only shown
representationally communicating with these other elements
s0 as not to unnecessarily clutter diagram 1300. CM API11316
permits configuration and monitoring server 316 carry out the
services of the configuration and monitoring services layer
910 described in FIG. 9. For example, CM API 1316 enables
configuration and monitoring server 316 to request, acquire,
and broadcast network information (e.g., IP addresses, etc.)
for the other elements coupled to private network 302. CM
API 1316 also facilitates messages to be received by scribe
service 952 and for OS monitoring service 954 to issue and
receive communications associated with the services pro-
vided by the object store services layer 906. Additionally, CM
API 1316 facilitates filer tracking communications between
configuration and monitoring server 316 and filers 222.

FIG. 14 is a block diagram showing a client application
server 304 in greater detail according to one embodiment of
the present invention. Client application server 304 includes
one or more processing unit(s) (PU) 1402, non-volatile
memory 1404, a user /O controller 1406, a private network
adapter 1408, a wide area network adapter 1410, and a work-
ing memory 1412, all intercommunicating via a system bus
1414. PU(s) 1402 execute(s) data and code contained in
working memory 1412 to cause client application server 304
to carry out its intended functions (e.g. providing a cloud
interface for clients 112(1-b), synchronizing file systems with
local cloud 104, etc.). Non-volatile memory 1404 (e.g. read-
only memory, one or more hard disk drives, flash memory,
etc.) provides storage for data and code (e.g., boot code, client
and sync applications, etc.) that are retained even when client

US 9,135,269 B2

39

application server 304 is powered down. User I/O controller
1406 manages connections for user interface devices (not
shown), for example a keyboard, mouse, monitor, printer,
camera, and other such devices that facilitate interaction and
communication between client application server 304 and a
user (e.g., a cloud administrator). Private network adapter
1408 (e.g. an Ethernet adapter card) transmits data packets
onto and receives data packets from private network 302 of
cloud 102. Wide Area Network Adapter 1410 (e.g. an Ether-
net adapter card) transmits data packets onto and receives
data packets from Internet 106. System bus 1414 facilitates
intercommunication between the various components of cli-
ent application server 304. Optionally, client application
server 304 includes another connection adapter (not shown)
to facilitate other connections 116(1-5).

Working memory 1412 (e.g. random access memory) pro-
vides dynamic memory for client application server 304, and
includes executable code (e.g. an operating system 1416,
etc.), which is loaded into working memory 1412 during
system start-up. Operating system 1416 facilitates control
and execution of the other modules loaded into working
memory 1412. Working memory 1412 also includes a com-
munications protocol stack 1418 that facilitates network
communications via wide area network adapter 1410 and/or
private network adapter 1408. Working memory 1412 further
includes a server application 1420 that receives and responds
to communications from clients 112(1-b) and local cloud 104.
Server application 1420 also provides communications to and
receives responses from load balancers 306(1-d). A virtual
file system module 1422 is also shown in working memory
1412 and is operative to query file system databases 314(1-%)
and generate virtual file systems that clients 112 can interact
with via server 1420. A client applications module 1424 and
a synchronization service module 1426 are also loaded in
working memory 1412 and provide the client application
services 914 and the synchronization services 916 of FIG. 9,
respectively. A client application server API 1428, a client
API 1430, and a configuration and monitoring (CM) API
1432 are also loaded in working memory 1412 and provide
some or all of the functions of client API 1302, client appli-
cation server API 1306, and CM API 1316, respectively.
Working memory 1412 also includes a cache 1434 (e.g., a
Memcached cache, etc.) that stores frequently used informa-
tion. Portions of the foregoing modules in working memory
1412 canbeloaded in cache 1434. Working memory 1412 can
include multiple iterations of the foregoing modules as
desired.

FIG. 15 is a block diagram showing a load balancer 306 in
greater detail according to one embodiment of the present
invention. Load balancer 306 includes one or more process-
ing unit(s) (PU) 1502, non-volatile memory 1504, a user [/O
controller 1506, a private network adapter 1508, and a work-
ing memory 1510, all intercommunicating via a system bus
1512. PU(s) 1502 execute(s) data and code contained in
working memory 1510 to cause load balancer 306 to carry out
its intended functions (e.g. balancing upload and download
requests among servers, proxying, etc.). Non-volatile
memory 1504 (e.g. read-only memory, one or more hard disk
drives, flash memory, etc.) provides storage for data and code
(e.g., boot code, load balancing and proxy applications, etc.)
that are retained even when load balancer 306 is powered
down. User I/O controller 1506 manages connections for user
interface devices (not shown) that facilitate interaction and
communication between load balancer 306 and a user (e.g., a
cloud administrator). Private network adapter 1508 (e.g. an
Ethernet adapter card) transmits data packets onto and
receives data packets from private network 302. System bus

10

15

20

25

30

35

40

45

50

55

60

65

40

1512 facilitates intercommunication between the various
components of load balancer 306.

Working memory 1510 (e.g. random access memory) pro-
vides dynamic memory for load balancer 306, and includes
executable code (e.g. an operating system 1514, etc.), which
is loaded into working memory 1510 during system start-up.
Operating system 1514 facilitates control and execution of
the other modules loaded into working memory 1510. Work-
ing memory 1510 also includes a load balancing module 1516
operative to provide the load balancing services described
herein and an optional proxy application 1518 operative to
provide the optional proxying services described herein.
Working memory 1510 is also shown to include a client
application server API 1520, a cloud application server
(CAS) AP11522, a cloud object server (COS) API 1524, and
a configuration and monitoring (CM) API 1526 operative to
provide some or all of the functions of client application
server AP11306, CAS AP11308, COS AP11310, and CM API
1316, respectively. Working memory 1510 also includes a
cache 1528 (e.g., a Memcached cache, etc.) that stores fre-
quently used information, such as portions of the modules in
working memory 1510. A communications protocol stack
1530 is also shown in working memory 1510 and facilitates
network communications via private network adapter 1508.
Working memory 1510 can include multiple iterations of the
foregoing modules as desired.

FIG. 16 is a block diagram showing a cloud application
server 308 in greater detail, according to one embodiment of
the present invention. Cloud application server 308 includes
one or more processing unit(s) (PU) 1602, non-volatile
memory 1604, a user /O controller 1606, a private network
adapter 1608, and a working memory 1610, all intercommu-
nicating via a system bus 1612. PU(s) 1602 execute(s) data
and code contained in working memory 1610 to cause cloud
application server 308 to carry out its intended functions (e.g.
handling upload requests, rebuilding filers, etc.). Non-vola-
tile memory 1604 (e.g. read-only memory, one or more hard
disk drives, flash memory, etc.) provides storage for data and
code (e.g., boot code, upload services, etc.) that are retained
even when cloud application server 308 is powered down.
User I/O controller 1606 manages connections for user inter-
face devices (not shown) that facilitate interaction and com-
munication between cloud application server 308 and a user
(e.g., a cloud administrator). Private network adapter 1608
(e.g. an Ethernet adapter card) transmits data packets onto and
receives data packets from private network 302. System bus
1612 facilitates intercommunication between the various
components of cloud application server 308.

Working memory 1610 (e.g. random access memory) pro-
vides dynamic memory for cloud application server 308, and
includes executable code (e.g. an operating system 1614,
etc.), which is loaded into working memory 1610 during
system start-up. Operating system 1614 facilitates control
and execution of the other modules loaded into working
memory 1610. Working memory 1610 also includes a server
application 1616 that receives and responds to communica-
tions with cloud application server 308. Working memory
1610 further includes an upload and distributor module 1618,
a download module 1620, a delete module 1622, a filer
rebuild module 1624, a filer rebalance module 1626, an object
auditor module 1628, an object purge module 1630, and an
object dedupe module 1632 each of which is operative to
provide the services of upload service 920 and distributor
service 922, download service 926, delete service 928, filer
rebuild service 930, filer rebalance service 932, object auditor
service 934, object purge service 936, and object dedupe
service 938 of FIG. 9, respectively. Working memory 1610

US 9,135,269 B2

41

also includes a cloud application server (CAS) API 1634, an
object database (OdB) AP11636, a filer API 1638, optionally
a client application server API 1640, and a configuration and
monitoring (CM) API 1642 that perform some or all of the
functions of CAS API 1308, OdB API 1312, filer API 1314,
client application server AP11306, and CM AP11316, respec-
tively. Working memory 1610 also includes a cache 1644
(e.g., a Memcached cache, etc.) that stores frequently used
information, such as shard table 500C, filer summary table
700, portions of modules in working memory 1610, etc. A
communications protocol stack 1646 is also shown in work-
ing memory 1610 and facilitates network communications
via private network adapter 1608. It should be noted that each
cloud application server 308(1-¢) may not include all of the
modules shown in working memory 1610. Rather, the cloud
application servers 308(1-¢) can specialize in particular func-
tions and, therefore, would include only particular ones of
modules shown in working memory 1610. Working memory
1610 can include multiple iterations of the foregoing modules
as desired.

FIG. 17 is a block diagram showing a cloud object server
310 in greater detail, according to one embodiment of the
present invention. Cloud object server 310 includes one or
more processing unit(s) (PU) 1702, non-volatile memory
1704, a user 1/O controller 1706, a private network adapter
1708, and a working memory 1710, all intercommunicating
via a system bus 1712. PU(s) 1702 execute(s) data and code
contained in working memory 1710 to cause cloud object
server 310 to carry out its intended functions (e.g. object
downloads, etc.). Non-volatile memory 1704 (e.g. read-only
memory, one or more hard disk drives, flash memory, etc.)
provides storage for data and code (e.g., boot code, download
services, etc.) that are retained even when cloud object server
310 is powered down. User I/O controller 1706 manages
connections for user interface devices (not shown) that facili-
tate interaction and communication between cloud object
server 310 and a user (e.g., a cloud administrator). Private
network adapter 1708 (e.g. an Ethernet adapter card) trans-
mits data packets onto and receives data packets from private
network 302. System bus 1712 facilitates intercommunica-
tion between the various components of cloud object server
310.

Working memory 1710 (e.g. random access memory) pro-
vides dynamic memory for cloud object server 310, and
includes executable code (e.g. an operating system 1714,
etc.), which is loaded into working memory 1710 during
system start-up. Operating system 1714 facilitates control
and execution of the other modules loaded into working
memory 1710. Working memory 1710 also includes a server
application 1716 that receives and responds to communica-
tions with cloud object server 310. A communications proto-
col stack 1718 is also shown in working memory 1710 and
facilitates network communications via private network
adapter 1608. Working memory 1710 further includes a
download module 1720 that provides the functions of down-
load service 926 of FIG. 9. Also shown in working memory
1710 are cloud application server (CAS) API 1722, a cloud
object server (COS) API 1724, a filer API 1726, optionally a
client application server API 1728, and a configuration and
monitoring API 1730 that perform some or all ofthe functions
of CAS API 1308, COS API 1310, filer API 1314, client
application server API 1306, and CM API 1316, respectively.
Working memory 1710 further includes a cache 1732 (e.g., a
Memcached cache, etc.) that stores frequently used informa-
tion, such as filer summary table 700, object records 504,
portions of the foregoing modules in working memory 1710,

10

15

20

25

30

35

40

45

50

55

60

65

42

etc. Working memory 1710 can include multiple iterations of
the foregoing modules as desired.

FIG. 18 is a block diagram showing a filer 222 in greater
detail according to one embodiment of the present invention.
Filer 222 includes one or more processing unit(s) (PU) 1802,
non-volatile memory 1804, a user /O controller 1806, a
private network adapter 1808, a mass data store 1810, a mass
data store adapter 1812, and a working memory 1814, all
intercommunicating via a system bus 1816. PU(s) 1802
execute(s) data and code contained in working memory 1810
to cause filer 222 to carry out its intended functions (e.g.
process requests to upload, download, and delete objects,
etc.). Non-volatile memory 1804 (e.g. read-only memory, one
or more hard disk drives, flash memory, etc.) provides storage
for data and code (e.g., boot code, download services, etc.)
that are retained even when filer 222 is powered down. User
1/O controller 1806 manages connections for user interface
devices (not shown) that facilitate interaction and communi-
cation between filer 222 and a user (e.g., a cloud administra-
tor). Private network adapter 1808 (e.g. an Ethernet adapter
card) transmits data packets onto and receives data packets
from private network 302. Private network adapter 1808 can
also be used to access a NAS-type mass data store 322. Mass
data store 1810 represents an embodiment of mass data store
322 thatis adapted to couple to bus 1810 (e.g., a RAID device,
etc.). Mass data store adapter 1812 is an adapter (e.g., an
FCoE adapter, etc.) for communicating with a mass data store
322 that is not coupled to system bus 1816, for example, a
JBOD or D-RAID device. Mass data store adapter 1812 also
represents a WAN adapter that communicates with a remote
mass data store (e.g., another private or public cloud) via
Internet 106. System bus 1816 facilitates intercommunication
between the various components of filer 222.

Working memory 1814 (e.g. random access memory) pro-
vides dynamic memory for filer 222, and includes executable
code (e.g. an operating system 1818, etc.), which is loaded
into working memory 1814 during system start-up. Operating
system 1818 facilitates control and execution of the other
modules loaded into working memory 1814. Working
memory 1814 also includes a server application 1820 that
receives and responds to communications with filer 222 as
well as a communications protocol stack 1822 that facilitates
network communications via private network adapter 1808
and/or mass data store adapter 1812. Working memory 1814
also includes a storage node service module 1824 that pro-
vides the services of storage node service 940 of FIG. 9. Also
shown in working memory 1814 are a filer API 1826 and a
configuration and monitoring (CM) API 1828 that provides
all or some of the functions of filer API 1314 and CM API
1316 of FIG. 13, respectively. Working memory 1814 further
includes a cache 1830 (e.g., a Memcached cache, etc.) that
stores frequently used information, including portions of the
modules of working memory 1814. Working memory 1814 is
also shown to include an object lookup module 1832 and
other filer utility modules 1834. Object lookup module 1832
represents a utility (e.g., a look-up table, etc.) that facilitates
rapid retrieval of objects stored on mass data store 322. Filer
utilities 1834 represent other data storage utilities (e.g., com-
pression and decompression programs, encryption and
decryption programs, etc.) that might be useful to storage
node service 1824. Working memory 1814 can include mul-
tiple iterations of the foregoing modules as desired.

FIG. 19 is ablock diagram showing an object database 312
in greater detail according to one embodiment of the present
invention. Object database 312 includes one or more process-
ing unit(s) (PU) 1902, non-volatile memory 1904, a user [/O
controller 1906, a private network adapter 1908, and a work-

US 9,135,269 B2

43

ing memory 1910, all intercommunicating via a system bus
1912. PU(s) 1902 execute(s) data and code contained in
working memory 1910 to cause object database 312 to carry
out its intended functions (e.g. receive queries regarding
object records, return object information, create and modify
object records, etc.). Non-volatile memory 1904 (e.g. read-
only memory, one or more hard disk drives, flash memory,
etc.) provides storage for data and code (e.g., boot code,
database tables and servers, etc.) that are retained even when
object database 312 is powered down. User 1/O controller
1906 manages connections for user interface devices (not
shown) that facilitate interaction and communication
between object database 312 and a user (e.g., a cloud admin-
istrator). Private network adapter 1908 (e.g. an Ethernet
adapter card) transmits data packets onto and receives data
packets from private network 302. System bus 1912 facili-
tates intercommunication between the various components of
object database 312.

Working memory 1910 (e.g. random access memory) pro-
vides dynamic memory for object database 312, and includes
executable code (e.g. an operating system 1914, etc.), which
is loaded into working memory 1910 during system start-up.
Operating system 1914 facilitates control and execution of
the other modules loaded into working memory 1910. Work-
ing memory 1910 also includes a database server 1916 (e.g.,
a key-value store service, a relational database server, etc.)
that receives and responds to queries of object database 312.
OdB tables 1918 represent the tables shown in FIGS. 5A-5C
used by object database 312, such as one or more object-filer
map shard(s) 502 containing an object-filer map table 500A
and deleted object-filer map table 500B, shards table 500C,
and optionally one or more shards 550 of filer rebuild table
500D. Because OdB tables 1918 are expected to be large,
portions of OdB tables 1918 can be swapped into and out of
working memory 1910 from non-volatile memory 1904 as
needed. Working memory 1910 also includes a communica-
tions protocol stack 1920 that facilitates network communi-
cations via private network adapter 1908 and a cache 1922
(e.g., a Memcached cache, etc.) that stores frequently used
information, including portions of the modules of working
memory 1910. Also shown in working memory are object
database API 1924 and configuration and monitoring (CM)
API 1926 that perform all or some of the functions of OdB
API1312 and CM API 1316, respectively, of FIG. 13. Work-
ing memory 1910 can include multiple iterations of the fore-
going modules as desired.

FIG. 20 is a block diagram showing a file system database
314 in greater detail according to one embodiment of the
present invention. File system database 314 includes one or
more processing unit(s) (PU) 2002, non-volatile memory
2004, a user I/O controller 2006, a private network adapter
2008, and a working memory 2010, all intercommunicating
via a system bus 2012. PU(s) 2002 execute(s) data and code
contained in working memory 2010 to cause file system data-
base 314 to carry out its intended functions (e.g. receive
queries regarding virtual object records, provide virtual file
system information, etc.). Non-volatile memory 2004 (e.g.
read-only memory, one or more hard disk drives, flash
memory, etc.) provides storage for data and code (e.g., boot
code, database tables and servers, etc.) that are retained even
when file system database 314 is powered down. User I/O
controller 2006 manages connections for user interface
devices (not shown) that facilitate interaction and communi-
cation between file system database 314 and a user (e.g., a
cloud administrator). Private network adapter 2008 (e.g. an
Ethernet adapter card) transmits data packets onto and
receives data packets from private network 302. System bus

40

45

50

44

2012 facilitates intercommunication between the various
components of file system database 314.

Working memory 2010 (e.g. random access memory) pro-
vides dynamic memory for file system database 314, and
includes executable code (e.g. an operating system 2014,
etc.), which is loaded into working memory 2010 during
system start-up. Operating system 2014 facilitates control
and execution of the other modules loaded into working
memory 2010. Working memory 2010 also includes a data-
base server 2016 (e.g., a relational database server) that
receives and responds to queries of file system database 314.
File system tables 2018 represent the tables shown in FIGS.
4A-4C, including clients table 400A and one or more shards
412, where each shard includes tables 400B-400G that store
virtual file system information for a client. Because file sys-
tem tables 2018 are expected to be large, portions of file
system tables 2018 can be swapped into and out of working
memory 2010 from non-volatile memory 1904 as needed.
Working memory 2010 also includes a communications pro-
tocol stack 2020, which facilitates network communications
via private network adapter 2008, and a cache 2022 (e.g., a
Memcached cache, etc.) that stores frequently used informa-
tion, such as portions of the modules of working memory
2010. Also shown in working memory are a client application
server AP1 2024, a cloud application server (CAS) API 2026,
and a configuration and monitoring (CM) API 2028 that per-
form some or all of the functions of client application server
API 1306, CAS API 1308, and CM API 1316, respectively.
Working memory 2010 can include multiple iterations of the
foregoing modules as desired.

FIG. 21 is a block diagram showing a configuration and
monitoring server 316 in greater detail, according to one
embodiment of the present invention. Configuration and
monitoring server 316 includes one or more processing
unit(s) (PU) 2102, non-volatile memory 2104, a user 1/O
controller 2106, a private network adapter 2108, and a work-
ing memory 2110, all intercommunicating via a system bus
2112. PU(s) 2102 execute(s) data and code contained in
working memory 2110 to cause configuration and monitoring
server 316 to carry out its intended functions (e.g. cloud
coordination, filer tracking, etc.). Non-volatile memory 2104
(e.g. read-only memory, one or more hard disk drives, flash
memory, etc.) provides storage for data and code (e.g., boot
code, filer tracking code and data, etc.) that are retained even
when configuration and monitoring server 316 is powered
down. User I/O controller 2106 manages connections for user
interface devices (not shown) that facilitate interaction and
communication between configuration and monitoring server
316 and a user (e.g., a cloud administrator). Private network
adapter 2108 (e.g. an Ethernet adapter card) transmits data
packets onto and receives data packets from private network
302. System bus 2112 facilitates intercommunication
between the various components of configuration and moni-
toring server 316.

Working memory 2110 (e.g. random access memory) pro-
vides dynamic memory for configuration and monitoring
server 316, and includes executable code (e.g. an operating
system 2114, etc.), which is loaded into working memory
2110 during system start-up. Operating system 2114 facili-
tates control and execution of the other modules loaded into
working memory 2110. Working memory 2110 also includes
a server 2116 that generates, receives, and responds to com-
munications with the other elements of cloud 102. Working
memory 2110 also includes a discovery and coordination
module 2118, a scribe module 2120, an object store (OS)
monitoring module 2122, an OS logs module 2124, a filer
tracking module 2126, and a filer logs module 2128 which

US 9,135,269 B2

45

implement the features and functions of discovery and coor-
dination service 950, scribe 952, OS monitoring service 954,
OS logs 958, filer tracking service 954, and filer logs 956,
respectively, of FIG. 9. Working memory also includes a
configuration and monitoring (CM) API 2130 that implement
the functions of CM API 1316 of FIG. 13. Working memory
2110 also includes a communications protocol stack 2132,
which facilitates network communications via private net-
work adapter 2108, and a cache 2134 (e.g., a Memcached
cache, etc.) that stores frequently used information, such as
portions of the modules of working memory 2110. Working
memory 2110 can include multiple iterations of the foregoing
modules as desired.

Like the systems shown in FIGS. 14-20, it should be noted
that each configuration and monitoring server 316(1-j) may
not include all of the modules shown in working memory
2110. Rather, the servers 316(1-/) can specialize in particular
functions and, therefore, would include only particular ones
of modules shown in working memory 2110.

FIGS. 14-21 show the elements of FI1G. 3 coupled to private
network 302 operating on systems coupled to private network
302. However, it should be understood that any combination
ofthe elements of cloud 102 shown in FIG. 3 can be embodied
as software modules operating on the same cloud computer
system. FIG. 22 is a block diagram showing one such cloud
computer system 2200 according to one embodiment of the
present invention.

Computer system 2200 includes one or more processing
unit(s) (PU) 2202, non-volatile memory 2204, a user 1/O
controller 2206, a private network adapter 2208, a mass data
store 2210, a mass data store adapter 2212, a wide area net-
work (WAN) adapter 2214, and a working memory 2216, all
intercommunicating via a system bus 2218. PU(s) 2202
execute(s) data and code contained in working memory 2216
to cause cloud computer system 2200 to carry out its object
storage functions. Non-volatile memory 2204 (e.g. read-only
memory, one or more hard disk drives, flash memory, etc.)
provides storage for data and code (e.g., boot code, the mod-
ules of working memory 2216, etc.) that are retained even
when cloud computer system 2200 is powered down. User
1/O controller 2206 manages connections for user interface
devices (not shown) that facilitate interaction and communi-
cation between cloud computer system 2200 and a user (e.g.,
a cloud administrator). Private network adapter 2208 (e.g. an
Ethernet adapter card) transmits data packets onto and
receives data packets from private network 302. Mass data
store 2210 represents an embodiment of mass data store 322
that is adapted to couple to bus 2218. Mass data store adapter
2212 is an adapter (e.g., an FCoE adapter, etc.) for commu-
nicating with a mass data store 322 that is not coupled to
system bus 2218. WAN adapter 2214 (e.g. an Ethernet adapter
card) transmits data packets onto and receives data packets
from Internet 106. System bus 2218 facilitates intercommu-
nication between the various components of cloud computer
system 2200.

Working memory 2216 (e.g. random access memory) pro-
vides dynamic memory for cloud computer system 2200, and
includes executable code (e.g. an operating system 2220,
etc.), which is loaded into working memory 2216 during
system start-up. Operating system 2220 facilitates control
and execution of the other modules loaded into working
memory 2216. Working memory 2216 is also shown to
include a cache 2222 (e.g., a Memcached cache, etc.) that
stores frequently used information (e.g., filer summary table
700, shards table 500C, etc.), including portions of the mod-
ules of working memory 2216. Working memory 2216
includes a client application server module 2224 that includes

10

15

20

25

30

35

40

45

50

55

60

65

46

all or some of the modules of working memory 1412 (FIG.
14) to implement client application server 304. Working
memory 2216 also includes a load balancer module 2226 that
includes all or some of the modules of working memory 1510
(FIG. 15) to implement load balancer 306. Additionally,
working memory 2216 includes a cloud application server
module 2228 that includes all or some of the modules of
working memory 1610 (FIG. 16) to implement cloud appli-
cation server 308. Working memory 2216 is shown to also
include a cloud object server module 2230 that includes all or
some of the modules of working memory 1710 (FIG. 17) to
implement cloud object server 310. In addition, working
memory 2216 includes a filer module 2232 that includes all or
some of the modules of working memory 1814 (FIG. 18) to
implement filer 222. Working memory 2216 also includes an
object database module 2234 that includes all or some of the
modules of working memory 1910 (FIG. 19) to implement
object database 312. Furthermore, working memory 2216
includes a file system database module 2236 that includes all
or some of the modules of working memory 2010 (FIG. 20) to
implement file system database 314. Working memory 2216
also includes a configuration and monitoring module 2238
that includes all or some of the modules of working memory
2110 (FIG. 21) to implement configuration and monitoring
server 316.

Working memory 2216 is shown to include sufficient soft-
ware modules to implement all the elements of cloud 102 that
are shown in FIG. 3. However, those skilled in the art will
realize that various combinations of software modules 2220-
2238 implementing the elements of cloud 102 can be distrib-
uted and replicated among a plurality of cloud computer
systems 2200 as determined to be desirable.

The methods of the present invention will now be described
with reference to FIGS. 23-26. For the sake of clear explana-
tion, these methods might be described with reference to
particular elements of the previously-described embodiments
that perform particular functions. However, it should be noted
that other elements, whether explicitly described herein or
created in view of the present disclosure, could be substituted
forthose cited without departing from the scope of the present
invention. Therefore, it should be understood that the meth-
ods of the present invention are not limited to any particular
element(s) that perform(s) any particular function(s). Further,
some steps of the methods presented need not necessarily
occur in the order shown. For example, in some cases two or
more method steps may occur simultaneously. These and
other variations of the methods disclosed herein will be
readily apparent, especially in view of the description of the
present invention provided previously herein, and are consid-
ered to be within the full scope of the invention.

FIG. 23 is a flowchart summarizing a method 2300 for
storing (uploading) an object to cloud 102, according to the
present invention. In a first step 2302, a client application
server 304 establishes a connection with a client (e.g., client
112, local cloud 104, etc.), for example, over Internet 106.
Then, in a second step 2304, a cloud application server 308
receives an upload request (e.g., from a load balancer 306,
etc.) indicating that the client wants to upload an object to
cloud 102. In a third step 2306, cloud application server 308
selects at least two storage nodes (filers 222) using upload
service 922 and distributor service 924 on which to store the
object. In a fourth step 2308, the cloud application server 308
receives the object from the client, and in a fifth step 2310, the
cloud application server 308 causes the object to be streamed
to the selected filers 222, optionally without staging, such that
the object is stored on each of the selected storage nodes.

US 9,135,269 B2

47

FIG. 24 is a flowchart summarizing a method 2400 for
retrieving (downloading) an object from cloud 102 according
to the present invention. In a first step 2402, a cloud object
server 310 receives a download request (e.g., from a load
balancer 306, etc.) indicating that the client wants to down-
load an object to cloud 102. In a second step 2404, cloud
object server 310 obtains storage node information (e.g.,
URLs for filers 222(1, . . . , x), path information, etc.) for
retrieving the object from any of a plurality of storage nodes
(filers 222(1, . . ., x)) from a cloud application server 308. For
example, cloud object server 310 can provide a UUID 600
supplied in the download request to the cloud application
server 308, and the cloud application server 308 can use the
UUID 600 to retrieve an object record 504 for the object and
provide all or portions of the object record 504 to the cloud
object server 310. In a third step 2406, cloud object server 310
retrieves the object from any of the plurality of storage nodes
identified in the storage node information. For example, cloud
object server 310 can retrieve the object from any of the filers
222(1, . .., x)identified in the object record 504 using a path
identified in the object record 504. Then, in a fourth step 2408,
the cloud object server 310 provides the retrieved object to the
client.

FIG. 25 is a flowchart summarizing a method 2500 for
deleting an object from cloud 102 according to the present
invention. In a first step 2502, a client application server 304
receives a command from a client to delete an object stored in
cloud 102. In a second step 2504, the client application server
304 marks the object for deletion in the clients virtual file
system, for example, by modifying an associated virtual
object record 442 and moving the virtual object record 422 to
a virtual objects trash table 400G, where it is stored as a
virtual object trash record 468. In a third step 2506, the object
is marked for deletion from the storage nodes (filers 222). For
example, a cloud application server 308 can query file system
database 314 for the virtual object trash record 468 associated
with the object, use the record 468 to find and mark a corre-
sponding object record 504 in object database 312 for dele-
tion, and move the object record 504 to the deleted object-filer
map table 500B, where it is stored as a deleted object record
522. In a fourth step, the cloud application server 308 purges
the object marked for deletion from each of the plurality of
storage nodes (e.g., filers 222(1, . . ., X)) on which it is stored,
for example, by using the information contained in the asso-
ciated deleted object record 522 in table 500B.

FIG. 26 is a flowchart summarizing a method 2600 for
rebuilding a failed storage node, including the objects stored
on it, according to the present invention. In a first step 2602,
a cloud application server 308 receives an indication that a
storage node (filer 222) has failed. In a second step 2604, the
cloud application server 308 accesses object databases 312
(1-g) storing object records, where each object record asso-
ciates an object with a plurality of storage nodes storing that
object. In a third step 2606, cloud application server 308 uses
the object records to identify the objects stored on the failed
storage node. Cloud application server 308 can identify the
objects stored on the failed storage node by searching the
object records 504 (and optionally the deleted object records
522) on each shard 502(1-k) of object databases 312(1-g) to
identify object records 504 (and optionally deleted object
records 522) that identify the failed storage node in one of
filer ID fields 508(1-x). Alternatively, if a filer rebuild table
500D exists, cloud application server 308 can identify the
objects stored on the failed storage node by locating the shard
of filer rebuild table 500D associated with the failed storage
node. In a fourth step 2608, cloud application server 308 uses
the object records 504, deleted object records 522, and/or

20

35

40

45

50

55

60

65

48

object records 552 to copy the identified objects from work-
ing storage nodes to a rebuilt storage node.

The description of particular embodiments of the present
invention is now complete. Many of the described features
may be substituted, altered, or omitted without departing
from the scope ofthe invention. For example, alternate means
of'locating an object record in an object database (e.g. a path
to the object, a hash, a URL, etc.), may be substituted for the
Universally-Unique Identifier 600 described herein. As
another example, objects (and clients) can be tied to particular
filer(s) 222 by embedding details of the filer(s) 222 in a smart
key associated with the object, for example in a virtual object
identifier. Such a modification would provide the advantage
that the object database(s) can be eliminated. As still another
example, the upload service can use write-back caching to
improve performance by committing uploads locally and
then replicating the uploaded objects across the filers 222 ata
later time. The download service can also use an intermediate
caching layer to store read objects. These and other deviations
from the particular embodiments shown will be apparent to
those skilled in the art, particularly in view of the foregoing
disclosure.

We claim:

1. An object storage system comprising:

a plurality of storage nodes for storing digital objects asso-

ciated with clients;

at least one client application server being operative to

establish a network connection with a client over an
inter-network,

receive an indication of an object to be uploaded by said
client,

generate an upload request associated with said object,
and

receive said object from said client via said inter-net-
work;

at least one cloud application server being operative to

receive said upload request from said client application
servet,

generate a Universally Unique Identifier (UUID) asso-
ciated with said object,

select at least two storage nodes from said plurality of
storage nodes,

receive said object from said client application server,
and

stream said object to each of said selected storage nodes
such that said object is stored on each of said selected
storage nodes;

afile system database storing information defining a virtual

file system associated with said client and accessible to
said client application server, said UUID being stored in
said file system database; and

at least one cloud object server; and wherein

said client application server is further operative to

receive a download command for said object from said
client,

retrieve said UUID from said file system database, and

provide said UUID to said cloud object server.

2. The system of claim 1, wherein each of said plurality of
storage nodes exposes a HyperText Transfer Protocol (HTTP)
interface.

3. The system of claim 1, wherein the number of said
selected storage nodes is configurable.

4. The system of claim 1, further comprising:

an object database storing a plurality of object records each

associating a stored object and multiple ones of said
storage nodes; and

US 9,135,269 B2

49

said cloud application server is further operative to cause
anobject record associating said object and said selected
storage nodes to be written to said object database.

5. The system of claim 4, wherein said cloud application
server is further operative to:

receive an indication that said object is to be deleted; and

modify said object record to indicate that said object is

marked for deletion.

6. The system of claim 5, wherein said cloud application
server is further operative to purge said object marked for
deletion from each of said selected storage nodes.

7. The system of claim 4, wherein:

said object database is sharded into a plurality of shards;

and

each shard includes some of said plurality of object

records.

8. The system of claim 7, wherein:

said object database further includes a plurality of shard

records; and

each of said shard records includes a shard identifier

uniquely identifying one of said shards.

9. The system of claim 7, wherein said UUID includes:

afirst field containing data identifying one of said plurality

of shards containing said object record associated with
said object; and

a second field containing an object identifier identifying

said object record among said plurality of object records.

10. The system of claim 4, wherein:

said client application server is further operative to

generate a download request associated with said object;
and

said cloud object server is operative to

receive said download request,

request said cloud application server to provide storage
node information facilitating the retrieval of said
object from any of said selected storage nodes,

request said object from any one of said selected storage
nodes, and

provide said object to said client application server.

11. The system of claim 10, wherein:

said object database is sharded into a plurality of shards;

each shard includes some of said plurality of object

records; and

said download request includes said UUID, said UUID

comprising a shard identifier identifying one of said
plurality of shards containing said object record.

12. The system of claim 11, wherein:

said cloud object server is operative to provide said UUID

to said cloud application server as part of said request for
said storage node information; and

said cloud application server is further operative to use said

UUID to query said object database to return said stor-
age node information.

13. The system of claim 1, wherein said cloud object server,
responsive to receiving said UUID, is operative to use said
UUID to obtain information facilitating the retrieval of said
object from any of said selected storage nodes.

14. The system of claim 1, wherein

said client application server is further operative to store a

virtual object record associated with said object in said
file system database.

15. The system of claim 14, wherein said client application
server is further operative to:

receive a delete command from said client requesting that

said object be deleted; and

modify said virtual object record to indicate that said object

is to be deleted.

10

15

20

25

30

35

40

45

50

55

60

65

50

16. The system of claim 14, wherein:
said file system database includes a plurality of tables
defining said virtual file system;
said plurality of tables is sharded into a plurality of shards;
and
said data defining said virtual file system associated with
said client is stored in only one of said plurality of
shards.
17. The system of claim 1, further comprising:
a plurality of cloud object servers each being operative to
retrieve said object from one of said selected storage
nodes and serve said object to said client application
server responsive to receiving a download request for
said object;
a plurality of said cloud application servers; and
a load balancer operative to
receive said upload request from said client application
server and provide it to a selected one of said plurality
of cloud application servers and

receive said download request from said client applica-
tion server and provide it to a selected one of said
plurality of cloud object servers.

18. The system of claim 1, further comprising a storage
node recovery module operative to rebuild one of said plural-
ity of storage nodes, including said digital objects stored on
said one of said plurality of storage nodes, when said one of
said storage nodes fails.

19. The system of claim 18, further comprising:

an object database storing a plurality of object records
associated with a plurality of stored objects, each said
object record indicating multiple ones of said storage
nodes storing an associated stored object; and wherein

said storage node recovery module is operative to rebuild
said failed storage node as a rebuilt storage node by
using said plurality of object records in said object data-
base to identify said stored objects stored on said failed
storage node and copy said identified stored objects
from other ones of said plurality of storage nodes to said
rebuilt storage node.

20. The system of claim 18, further comprising:

a database storing a plurality of object records associated
with a plurality of stored objects, each said object record
indicating multiple ones of said storage nodes storing an
associated stored object; and wherein

said plurality of object records are sharded by storage
node; and

said storage node recovery module is operative to rebuild
said failed storage node as a rebuilt storage node by
identifying a shard associated with said failed storage
node and copying objects associated with the object
records contained in said identified shard from other
ones of said plurality of storage nodes to said rebuilt
storage node.

21. The system of claim 1, further comprising a rebalance
module operative to move objects stored on said one of said
plurality of storage nodes to other ones of said plurality of
storage nodes.

22. The system of claim 21, further comprising:

an object database storing a plurality of object records
associated with a plurality of stored objects, each said
object record indicating multiple ones of said storage
nodes storing an associated stored object; and wherein

said rebalance module is operative to modify at least some
of said plurality of object records.

23. The system of claim 1, further comprising an object

auditor operative to determine whether said object stored on
one or more of said selected storage nodes has degraded.

US 9,135,269 B2

51

24. The system of claim 1, wherein:

said client application server is further operative to receive
a second object from said client via said inter-network;
and

said cloud application server is further operative to

select at least two storage nodes from said plurality of
storage nodes for said second object that are different
from said at least two storage nodes selected for said
object and

store said second object on each of said storage nodes
selected for said second object.

25. The system of claim 1, wherein multiple ones of said
plurality of storage nodes are selected on an object-by-object
basis for additional objects uploaded by said client.

26. An object storage system comprising:

aplurality of storage nodes for storing digital objects asso-

ciated with clients;

at least one client application server being operative to

establish a network connection with a client over an
inter-network,

receive an indication of an object to be uploaded by said
client,

generate an upload request associated with said object,
and

receive said object from said client via said inter-net-
work;

at least one cloud application server being operative to

receive said upload request from said client application
server,

generate a Universally Unique Identifier (UUID) asso-
ciated with said object, and

receive said object from said client application server;

means for selecting at least two storage nodes from said

plurality of storage nodes in response to said upload

request;

means for streaming said object from said client applica-

tion server to each of said selected storage nodes such
that said object is stored on each of said selected storage
nodes;

afile system database storing information defining a virtual

file system associated with said client and accessible to
said client application server, said UUID being stored in
said file system database;

at least one cloud object server; and wherein

said client application server is further operative to

receive a download command for said object from said
client,

retrieve said UUID from said file system database, and

provide said UUID to said cloud object server.

27. The system of claim 26, wherein each of said plurality
of storage nodes exposes a HyperText Transfer Protocol
(HTTP) interface.

28. The system of claim 26, wherein the number of said
selected storage nodes is configurable.

29. The system of claim 26, further comprising:

an object database storing a plurality of object records each

associating a stored object and multiple ones of said
storage nodes; and

said cloud application server is further operative to cause

anobject record associating said object and said selected
storage nodes to be written to said object database.

30. The system of claim 29, wherein said cloud application
server is further operative to:

receive an indication that said object is to be deleted; and

modify said object record to indicate that said object is

marked for deletion.

10

15

20

25

30

40

45

50

55

52

31. The system of claim 30, wherein said cloud application
server is further operative to purge said object marked for
deletion from each of said selected storage nodes.

32. The system of claim 29, wherein:

said object database is sharded into a plurality of shards;

and

each shard includes some of said plurality of object

records.

33. The system of claim 32, wherein:

said object database further includes a plurality of shard

records; and

each of said shard records includes a shard identifier

uniquely identifying one of said shards.

34. The system of claim 32, wherein said UUID includes:

a first field containing data identifying one of said plurality

of shards containing said object record associated with
said object; and

a second field containing an object identifier identifying

said object record among said plurality of object records.

35. The system of claim 29, wherein:

said client application server is further operative to gener-

ate a download request associated with said object; and

said cloud object server is operative to

receive said download request,

request said cloud application server to provide storage
node information facilitating the retrieval of said
object from any of said selected storage nodes,

request said object from any one of said selected storage
nodes, and

provide said object to said client application server.

36. The system of claim 35, wherein:

said object database is sharded into a plurality of shards;

each shard includes some of said plurality of object

records; and

said download request includes said UUID, said UUID

comprising a shard identifier identifying one of said
plurality of shards containing said object record.

37. The system of claim 36, wherein:

said cloud object server is operative to provide said UUID

to said cloud application server as part of said request for
said storage node information; and

said cloud application server is further operative to use said

UUID to query said object database to return said stor-
age node information.

38. The system of claim 26, wherein said cloud object
server, responsive to receiving said UUID, is operative to use
said UUID to obtain information facilitating the retrieval of
said object from any of said selected storage nodes.

39. The system of claim 26, wherein said client application
server is further operative to store a virtual object record
associated with said object in said file system database.

40. The system of claim 39, wherein said client application
server is further operative to:

receive a delete command from said client requesting that

said object be deleted; and

modify said virtual object record to indicate that said object

is to be deleted.

41. The system of claim 39, wherein:

said file system database includes a plurality of tables

defining said virtual file system;

said plurality of tables is sharded into a plurality of shards;

and

said data defining said virtual file system associated with

said client is stored in only one of said plurality of
shards.

US 9,135,269 B2

53

42. The system of claim 26, further comprising:
a plurality of cloud object servers each being operative to
retrieve said object from one of said selected storage
nodes and serve said object to said client application
server responsive to receiving a download request for
said object;
a plurality of said cloud application servers; and
a load balancer operative to
receive said upload request from said client application
server and provide it to a selected one of said plurality
of cloud application servers and

receive said download request from said client applica-
tion server and provide it to a selected one of said
plurality of cloud object servers.

43. The system of claim 26, further comprising a storage
node recovery module operative to rebuild one of said plural-
ity of storage nodes, including said digital objects stored on
said one of said plurality of storage nodes, when said one of
said storage nodes fails.

44. The system of claim 43, further comprising:

an object database storing a plurality of object records
associated with a plurality of stored objects, each said
object record indicating multiple ones of said storage
nodes storing an associated stored object; and wherein

said storage node recovery module is operative to rebuild
said failed storage node as a rebuilt storage node by
using said plurality of object records in said object data-
base to identify said stored objects stored on said failed
storage node and copy said identified stored objects
from other ones of said plurality of storage nodes to said
rebuilt storage node.

45. The system of claim 43, further comprising:

a database storing a plurality of object records associated
with a plurality of stored objects, each said object record
indicating multiple ones of said storage nodes storing an
associated stored object; and wherein

o

54

said plurality of object records are sharded by storage
node; and

said storage node recovery module is operative to rebuild
said failed storage node as a rebuilt storage node by
identifying a shard associated with said failed storage
node and copying objects associated with the object
records contained in said identified shard from other
ones of said plurality of storage nodes to said rebuilt
storage node.

46. The system of claim 26, further comprising a rebalance

module operative to move objects stored on said one of said
plurality of storage nodes to other ones of said plurality of
storage nodes.

47. The system of claim 46, further comprising:

an object database storing a plurality of object records
associated with a plurality of stored objects, each said
object record indicating multiple ones of said storage
nodes storing an associated stored object; and wherein

said rebalance module is operative to modify at least some
of said plurality of object records.

48. The system of claim 26, further comprising an object

auditor operative to determine whether said object stored on
one or more of said selected storage nodes has degraded.

49. The system of claim 26, wherein:

said client application server is further operative to receive
a second object from said client via said inter-network;

said means for selecting selects at least two storage nodes
from said plurality of storage nodes for said second
object that are different from said at least two storage
nodes selected for said object; and

said means for streaming is operative to stream said second
object to each of said storage nodes selected for said
second object.

50. The system of claim 26, wherein multiple ones of said

plurality of storage nodes are selected on an object-by-object
basis for additional objects uploaded by said client.

#* #* #* #* #*

